MathematikaPub Date : 2025-05-28DOI: 10.1112/mtk.70026
Ciprian Demeter, Hongki Jung, Donggeun Ryou
{"title":"Maximal -subsets of manifolds","authors":"Ciprian Demeter, Hongki Jung, Donggeun Ryou","doi":"10.1112/mtk.70026","DOIUrl":"https://doi.org/10.1112/mtk.70026","url":null,"abstract":"<p>We construct maximal <span></span><math></math>-subsets on a large class of curved manifolds, in an optimal range of Lebesgue exponents <span></span><math></math>. Our arguments combine restriction estimates and decoupling with old and new probabilistic estimates.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144148647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-05-28DOI: 10.1112/mtk.70027
Kota Saito
{"title":"Mills' constant is irrational","authors":"Kota Saito","doi":"10.1112/mtk.70027","DOIUrl":"https://doi.org/10.1112/mtk.70027","url":null,"abstract":"<p>Let <span></span><math></math> denote the integer part of <span></span><math></math>. In 1947, Mills constructed a real number <span></span><math></math> such that <span></span><math></math> is always a prime number for every positive integer <span></span><math></math>. We define Mills' constant as the smallest real number <span></span><math></math> satisfying this property. Determining whether this number is irrational has been a long-standing problem. In this paper, we show that Mills' constant is irrational. Furthermore, we obtain partial results on the transcendency of this number.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144148382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-05-23DOI: 10.1112/mtk.70025
Marta Kosek, Małgorzata Stawiska
{"title":"Non-autonomous iteration of polynomials in the complex plane","authors":"Marta Kosek, Małgorzata Stawiska","doi":"10.1112/mtk.70025","DOIUrl":"https://doi.org/10.1112/mtk.70025","url":null,"abstract":"<p>We consider a sequence <span></span><math></math> of polynomials with uniformly bounded zeros and <span></span><math></math>, <span></span><math></math> for <span></span><math></math>, satisfying certain asymptotic conditions. We prove that the function sequence <span></span><math></math> is uniformly convergent in <span></span><math></math>. The non-autonomous filled Julia set <span></span><math></math> generated by the polynomial sequence <span></span><math></math> is defined and shown to be compact and regular with respect to the Green function. Our toy example is generated by <span></span><math></math>, where <span></span><math></math> is the classical Chebyshev polynomial of degree <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-04-29DOI: 10.1112/mtk.70021
Julia Q. Du, Liping Yuan, Tudor Zamfirescu
{"title":"On orthogonal and staircase connectedness in the plane","authors":"Julia Q. Du, Liping Yuan, Tudor Zamfirescu","doi":"10.1112/mtk.70021","DOIUrl":"https://doi.org/10.1112/mtk.70021","url":null,"abstract":"<p>In this paper, we introduce <i>o</i>-extreme points defined by using orthogonal paths in orthogonally connected sets. We investigate their properties and obtain Minkowski-type theorems involving orthogonally connected sets. Using <i>o</i>-extreme points, we give some characterizations of staircase connectedness.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143888809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-04-28DOI: 10.1112/mtk.70023
Mumtaz Hussain, Benjamin Ward
{"title":"A note on limsup sets of annuli","authors":"Mumtaz Hussain, Benjamin Ward","doi":"10.1112/mtk.70023","DOIUrl":"https://doi.org/10.1112/mtk.70023","url":null,"abstract":"<p>We consider the set of points in infinitely many max-norm annuli centred at rational points in <span></span><math></math>. We give Jarník–Besicovitch-type theorems for this set in terms of Hausdorff dimension. Interestingly, we find that if the outer radii are decreasing sufficiently slowly, dependent only on the dimension <span></span><math></math>, and the thickness of the annuli is decreasing rapidly, then the dimension of the set tends towards <span></span><math></math>. We also consider various other forms of annuli including rectangular annuli and quasi-annuli described by the difference between balls of two different norms. Our results are deduced through a novel combination of a version of Cassel's scaling lemma and a generalisation of the Mass Transference Principle, namely the Mass transference principle from rectangles to rectangles due to Wang and Wu (Math. Ann. 2021).</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 3","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-04-22DOI: 10.1112/mtk.70020
Annalisa Cesaroni, Matteo Novaga
{"title":"Minimal periodic foams with fixed inradius","authors":"Annalisa Cesaroni, Matteo Novaga","doi":"10.1112/mtk.70020","DOIUrl":"https://doi.org/10.1112/mtk.70020","url":null,"abstract":"<p>In this note, we show existence and regularity of periodic tilings of the Euclidean space into equal cells containing a ball of fixed radius, which minimize either the classical or the fractional perimeter. We also discuss some qualitative properties of minimizers in dimensions 3 and 4.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143861591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-04-21DOI: 10.1112/mtk.70019
M. M. Skriganov
{"title":"Spherical functions and Stolarsky's invariance principle","authors":"M. M. Skriganov","doi":"10.1112/mtk.70019","DOIUrl":"https://doi.org/10.1112/mtk.70019","url":null,"abstract":"<p>In the previous paper (Skriganov, <i>J. Complexity</i> 56 (2020), 101428), Stolarsky's invariance principle, known in the literature for point distributions on Euclidean spheres, has been extended to the real, complex, and quaternionic projective spaces and the octonionic projective plane. Geometric features of these spaces as well as their models in terms of Jordan algebras have been used very essentially in the proof. In the present paper, a new pure analytic proof of the extended Stolarsky's invariance principle is given, relying on the theory of spherical functions on compact Riemannian symmetric manifolds of rank one.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MathematikaPub Date : 2025-04-04DOI: 10.1112/mtk.70018
Ilya D. Shkredov, Igor E. Shparlinski
{"title":"On the determinants of matrices with elements from arbitrary sets","authors":"Ilya D. Shkredov, Igor E. Shparlinski","doi":"10.1112/mtk.70018","DOIUrl":"https://doi.org/10.1112/mtk.70018","url":null,"abstract":"<p>Recently there have been several works estimating the number of <span></span><math></math> matrices with elements from some finite sets <span></span><math></math> of arithmetic interest and of a given determinant. Typically such results are compared with the trivial upper bound <span></span><math></math>, where <span></span><math></math> is the cardinality of <span></span><math></math>. Here we show that even for arbitrary sets <span></span><math></math>, some recent results from additive combinatorics enable us to obtain a stronger bound with a power saving.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143770450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On a Gallai-type problem and illumination of spiky balls and cap bodies","authors":"Andrii Arman, Andriy Bondarenko, Andriy Prymak, Danylo Radchenko","doi":"10.1112/mtk.70017","DOIUrl":"https://doi.org/10.1112/mtk.70017","url":null,"abstract":"<p>We show that any finite family of pairwise intersecting balls in <span></span><math></math> can be pierced by <span></span><math></math> points improving the previously known estimate of <span></span><math></math>. As a corollary, this implies that any 2-illuminable spiky ball in <span></span><math></math> can be illuminated by <span></span><math></math> directions. For the illumination number of convex spiky balls, that is, cap bodies, we show an upper bound in terms of the sizes of certain related spherical codes and coverings. For large dimensions, this results in an upper bound of <span></span><math></math>, which can be compared with the previous <span></span><math></math> established only for the centrally symmetric cap bodies. We also prove the lower bounds of <span></span><math></math> for the three problems above.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A sharp higher order Sobolev embedding","authors":"Raul Hindov, Shahaf Nitzan, Jan-Fredrik Olsen, Eskil Rydhe","doi":"10.1112/mtk.70012","DOIUrl":"https://doi.org/10.1112/mtk.70012","url":null,"abstract":"<p>We obtain sharp embeddings from the Sobolev space <span></span><math></math> into the space <span></span><math></math> and determine the extremal functions. This improves on a previous estimate of the sharp constants of these embeddings due to Kalyabin.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 2","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}