Mathematika最新文献

筛选
英文 中文
On type IV superorthogonality 关于IV型超正交
IF 0.8 3区 数学
Mathematika Pub Date : 2025-10-01 DOI: 10.1112/mtk.70054
Jianghao Zhang
{"title":"On type IV superorthogonality","authors":"Jianghao Zhang","doi":"10.1112/mtk.70054","DOIUrl":"https://doi.org/10.1112/mtk.70054","url":null,"abstract":"<p>We prove the direct and the converse inequalities for type IV superorthogonality in the vector-valued setting. The converse one is also new in the scalar setting.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145223866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upper bounds for moments of Dirichlet -functions to a fixed modulus 固定模的狄利克雷函数矩的上界
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-30 DOI: 10.1112/mtk.70052
Peng Gao, Liangyi Zhao
{"title":"Upper bounds for moments of Dirichlet -functions to a fixed modulus","authors":"Peng Gao,&nbsp;Liangyi Zhao","doi":"10.1112/mtk.70052","DOIUrl":"https://doi.org/10.1112/mtk.70052","url":null,"abstract":"<p>We study the <span></span><math></math> moment of central values of the family of Dirichlet <span></span><math></math>-functions to a fixed prime modulus and establish sharp upper bounds for all real <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145224464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric inequalities, stability results and Kendall's problem in spherical space 球面空间中的几何不等式、稳定性结果和Kendall问题
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-18 DOI: 10.1112/mtk.70049
Daniel Hug, Andreas Reichenbacher
{"title":"Geometric inequalities, stability results and Kendall's problem in spherical space","authors":"Daniel Hug,&nbsp;Andreas Reichenbacher","doi":"10.1112/mtk.70049","DOIUrl":"10.1112/mtk.70049","url":null,"abstract":"<p>In Euclidean space, the asymptotic shape of large cells in various types of Poisson-driven random tessellations has been the subject of a famous conjecture due to David Kendall. Since shape is a geometric concept and large cells are identified by means of geometric size functionals, the resolution of the conjecture is inevitably connected with geometric inequalities of isoperimetric type and their improvements in the form of geometric stability results, relating geometric size functionals and hitting functionals. The latter are deterministic characteristics of the underlying random tessellation. The current work explores specific and typical cells of random tessellations in spherical space. A key ingredient of our approach is new geometric inequalities and quantitative strengthenings in terms of stability results for general and also for some specific size and hitting functionals of spherically convex bodies. As a consequence, we obtain probabilistic deviation inequalities and asymptotic distributions of quite general size functionals. In contrast to the Euclidean setting, where naturally the asymptotic regime concerns large size, in the spherical framework, the asymptotic analysis is primarily concerned with high intensities.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70049","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse bounds for discrete maximal functions associated with Birch–Magyar averages 与Birch-Magyar平均相关的离散极大函数的稀疏界
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-12 DOI: 10.1112/mtk.70048
Ankit Bhojak, Surjeet Singh Choudhary, Siddhartha Samanta, Saurabh Shrivastava
{"title":"Sparse bounds for discrete maximal functions associated with Birch–Magyar averages","authors":"Ankit Bhojak,&nbsp;Surjeet Singh Choudhary,&nbsp;Siddhartha Samanta,&nbsp;Saurabh Shrivastava","doi":"10.1112/mtk.70048","DOIUrl":"10.1112/mtk.70048","url":null,"abstract":"<p>In this article, we study discrete maximal function associated with the Birch–Magyar averages over sparse sequences. We establish sparse domination principle for such operators. As a consequence, we obtain <span></span><math></math>-estimates for such discrete maximal functions over sparse sequences for all <span></span><math></math>. The proof of sparse bounds is based on scale-free <span></span><math></math>-improving estimates for the single scale Birch–Magyar averages.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New fiber and graph combinations of convex bodies 新的纤维和图形的凸体组合
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-12 DOI: 10.1112/mtk.70043
Steven Hoehner, Sudan Xing
{"title":"New fiber and graph combinations of convex bodies","authors":"Steven Hoehner,&nbsp;Sudan Xing","doi":"10.1112/mtk.70043","DOIUrl":"10.1112/mtk.70043","url":null,"abstract":"<p>Three new combinations of convex bodies are introduced and studied: the <span></span><math></math> fiber, <span></span><math></math> chord, and graph combinations. These combinations are defined in terms of the fibers and graphs of pairs of convex bodies, and each operation generalizes the classical Steiner symmetral, albeit in different ways. For the <span></span><math></math> fiber and <span></span><math></math> chord combinations, we derive Brunn–Minkowski-type inequalities and the corresponding Minkowski's first inequalities. We also prove that the general affine surface areas are concave (respectively, convex) with respect to the graph sum, thereby generalizing fundamental results of Ye (<i>Indiana Univ. Math. J</i>. 14 (2014), 1–19) on the monotonicity of the general affine surface areas under Steiner symmetrization. As an application, we deduce a corresponding Minkowski's first inequality for the <span></span><math></math> affine surface area of a graph combination of convex bodies.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145050977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher rank antipodality 高阶反对性
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-08 DOI: 10.1112/mtk.70046
Márton Naszódi, Zsombor Szilágyi, Mihály Weiner
{"title":"Higher rank antipodality","authors":"Márton Naszódi,&nbsp;Zsombor Szilágyi,&nbsp;Mihály Weiner","doi":"10.1112/mtk.70046","DOIUrl":"10.1112/mtk.70046","url":null,"abstract":"<p>Motivated by general probability theory, we say that the set <span></span><math></math> in <span></span><math></math> is <i>antipodal of rank</i> <span></span><math></math>, if for any <span></span><math></math> elements <span></span><math></math>, there is an affine map from <span></span><math></math> to the <span></span><math></math>-dimensional simplex <span></span><math></math> that maps <span></span><math></math> bijectively onto the <span></span><math></math> vertices of <span></span><math></math>. For <span></span><math></math>, it coincides with the well-studied notion of (pairwise) antipodality introduced by Klee. We consider the following natural generalization of Klee's problem on antipodal sets: What is the maximum size of an antipodal set of rank <span></span><math></math> in <span></span><math></math>? We present a geometric characterization of antipodal sets of rank <span></span><math></math> and adapting the argument of Danzer and Grünbaum originally developed for the <span></span><math></math> case, we prove an upper bound which is exponential in the dimension. We show that this problem can be connected to a classical question in computer science on finding perfect hashes, and it provides a lower bound on the maximum size, which is also exponential in the dimension. By connecting rank-<span></span><math></math> antipodality to <span></span><math></math>-neighborly polytopes, we obtain another upper bound when <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the linear independence of -adic polygamma values 关于-进多值的线性无关性
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-08 DOI: 10.1112/mtk.70040
Makoto Kawashima, Anthony Poëls
{"title":"On the linear independence of -adic polygamma values","authors":"Makoto Kawashima,&nbsp;Anthony Poëls","doi":"10.1112/mtk.70040","DOIUrl":"10.1112/mtk.70040","url":null,"abstract":"<p>In this article, we present a new linear independence criterion for values of the <span></span><math></math>-adic polygamma functions defined by Diamond. As an application, we obtain the linear independence of some families of values of the <span></span><math></math>-adic Hurwitz zeta function <span></span><math></math> at distinct shifts <span></span><math></math>. This improves and extends a previous result due to Bel (Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) IX (2010), 189–227), as well as irrationality results established by Beukers (Acta Math. Sin. 24 (2008), 663–686). Our proof is based on a novel and explicit construction of Padé-type approximants of the second kind of Diamond's <span></span><math></math>-adic polygamma functions. This construction is established by using a difference analogue of the Rodrigues formula for orthogonal polynomials.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145012551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractional moments of -functions and sums of two squares in short intervals 函数的分数阶矩和短间隔内两个平方和
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-04 DOI: 10.1112/mtk.70047
Siegfred Baluyot, Steven M. Gonek
{"title":"Fractional moments of -functions and sums of two squares in short intervals","authors":"Siegfred Baluyot,&nbsp;Steven M. Gonek","doi":"10.1112/mtk.70047","DOIUrl":"10.1112/mtk.70047","url":null,"abstract":"<p>Let <span></span><math></math> if <span></span><math></math> is the sum of two perfect squares, and <span></span><math></math> otherwise. We study the variance of <span></span><math></math> in short intervals by relating the variance with the second moment of the generating function <span></span><math></math> along <span></span><math></math>. We develop a new method for estimating fractional moments of <span></span><math></math>-functions and apply it to the second moment of <span></span><math></math> to bound the variance of <span></span><math></math>. Our results are conditional on the Riemann hypothesis for the zeta-function and the Dirichlet <span></span><math></math>-function associated with the non-principal character modulo 4.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144990783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On restricted sumsets with bounded degree relations 关于有界度关系的限制集合
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-03 DOI: 10.1112/mtk.70045
Minghui Ouyang
{"title":"On restricted sumsets with bounded degree relations","authors":"Minghui Ouyang","doi":"10.1112/mtk.70045","DOIUrl":"10.1112/mtk.70045","url":null,"abstract":"<p>Given two subsets <span></span><math></math> and a binary relation <span></span><math></math>, the restricted sumset of <span></span><math></math> with respect to <span></span><math></math> is defined as <span></span><math></math>. When <span></span><math></math> is taken as the equality relation, determining the minimum value of <span></span><math></math> is the famous Erdős–Heilbronn problem, which was solved separately by Dias da Silva, Hamidoune and Alon, Nathanson and Ruzsa. Lev later conjectured that if <span></span><math></math> with <span></span><math></math> and <span></span><math></math> is a matching between subsets of <span></span><math></math> and <span></span><math></math>, then <span></span><math></math>. We confirm this conjecture in the case where <span></span><math></math> for any <span></span><math></math>, provided that <span></span><math></math> for some sufficiently large <span></span><math></math> depending only on <span></span><math></math>. Our proof builds on a recent work by Bollobás, Leader, and Tiba, and a rectifiability argument developed by Green and Ruzsa. Furthermore, our method extends to cases when <span></span><math></math> is a degree-bounded relation, either on both sides <span></span><math></math> and <span></span><math></math> or solely on the smaller set. In addition, we construct subsets <span></span><math></math> with <span></span><math></math> such that <span></span><math></math> for any prime number <span></span><math></math>, where <span></span><math></math> is a matching on <span></span><math></math>. This extends an earlier construction by Lev and highlights a distinction between the combinatorial notion of the restricted sumset and the classcial Erdős–Heilbronn problem, where <span></span><math></math> holds given <span></span><math></math> is the equality relation on <span></span><math></math> and <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144935352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topographs for binary quadratic forms and class numbers 二元二次型和类数的地形图
IF 0.8 3区 数学
Mathematika Pub Date : 2025-09-01 DOI: 10.1112/mtk.70042
Cormac O'Sullivan
{"title":"Topographs for binary quadratic forms and class numbers","authors":"Cormac O'Sullivan","doi":"10.1112/mtk.70042","DOIUrl":"10.1112/mtk.70042","url":null,"abstract":"<p>In this work, we study in greater detail than before, J.H. Conway's topographs for integral binary quadratic forms. These are trees in the plane with regions labeled by integers following a simple pattern. Each topograph can display the values of a single form, or represent an equivalence class of forms. We give a new treatment of reduction of forms to canonical equivalence class representatives by employing topographs and a novel continued fraction for complex numbers. This allows uniform reduction for any positive, negative, square, or nonsquare discriminant. Topograph geometry also provides new class number formulas, and short proofs of results of Gauss relating to sums of three squares. Generalizations of the series of Hurwitz for class numbers give evaluations of certain infinite series, summed over the regions or edges of a topograph.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144923590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信