Geometric inequalities, stability results and Kendall's problem in spherical space

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-09-18 DOI:10.1112/mtk.70049
Daniel Hug, Andreas Reichenbacher
{"title":"Geometric inequalities, stability results and Kendall's problem in spherical space","authors":"Daniel Hug,&nbsp;Andreas Reichenbacher","doi":"10.1112/mtk.70049","DOIUrl":null,"url":null,"abstract":"<p>In Euclidean space, the asymptotic shape of large cells in various types of Poisson-driven random tessellations has been the subject of a famous conjecture due to David Kendall. Since shape is a geometric concept and large cells are identified by means of geometric size functionals, the resolution of the conjecture is inevitably connected with geometric inequalities of isoperimetric type and their improvements in the form of geometric stability results, relating geometric size functionals and hitting functionals. The latter are deterministic characteristics of the underlying random tessellation. The current work explores specific and typical cells of random tessellations in spherical space. A key ingredient of our approach is new geometric inequalities and quantitative strengthenings in terms of stability results for general and also for some specific size and hitting functionals of spherically convex bodies. As a consequence, we obtain probabilistic deviation inequalities and asymptotic distributions of quite general size functionals. In contrast to the Euclidean setting, where naturally the asymptotic regime concerns large size, in the spherical framework, the asymptotic analysis is primarily concerned with high intensities.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.70049","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70049","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In Euclidean space, the asymptotic shape of large cells in various types of Poisson-driven random tessellations has been the subject of a famous conjecture due to David Kendall. Since shape is a geometric concept and large cells are identified by means of geometric size functionals, the resolution of the conjecture is inevitably connected with geometric inequalities of isoperimetric type and their improvements in the form of geometric stability results, relating geometric size functionals and hitting functionals. The latter are deterministic characteristics of the underlying random tessellation. The current work explores specific and typical cells of random tessellations in spherical space. A key ingredient of our approach is new geometric inequalities and quantitative strengthenings in terms of stability results for general and also for some specific size and hitting functionals of spherically convex bodies. As a consequence, we obtain probabilistic deviation inequalities and asymptotic distributions of quite general size functionals. In contrast to the Euclidean setting, where naturally the asymptotic regime concerns large size, in the spherical framework, the asymptotic analysis is primarily concerned with high intensities.

Abstract Image

Abstract Image

Abstract Image

球面空间中的几何不等式、稳定性结果和Kendall问题
在欧几里得空间中,各种泊松驱动随机镶嵌中的大细胞的渐近形状一直是David Kendall提出的一个著名猜想的主题。由于形状是一个几何概念,而大细胞是通过几何尺寸泛函来识别的,因此猜想的解决必然与等周型几何不等式及其以几何稳定性结果形式的改进有关,即几何尺寸泛函和撞击泛函。后者是潜在随机镶嵌的确定性特征。目前的工作是探索球形空间中随机镶嵌的特定和典型细胞。我们的方法的一个关键组成部分是新的几何不等式和定量增强的稳定性结果对于一般和一些特定的尺寸和击打函数的球凸体。因此,我们得到了概率偏差不等式和相当一般大小的泛函的渐近分布。与欧几里得设置相反,在欧几里得设置中,渐近状态自然涉及大尺寸,在球形框架中,渐近分析主要涉及高强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信