球面和平面环面上行列式点过程的里兹能、差异和最佳传输

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-03-28 DOI:10.1112/mtk.12245
Bence Borda, Peter Grabner, Ryan W. Matzke
{"title":"球面和平面环面上行列式点过程的里兹能、差异和最佳传输","authors":"Bence Borda,&nbsp;Peter Grabner,&nbsp;Ryan W. Matzke","doi":"10.1112/mtk.12245","DOIUrl":null,"url":null,"abstract":"<p>Determinantal point processes exhibit an inherent repulsive behavior, thus providing examples of very evenly distributed point sets on manifolds. In this paper, we study the so-called harmonic ensemble, defined in terms of Laplace eigenfunctions on the sphere <span></span><math></math> and the flat torus <span></span><math></math>, and the so-called spherical ensemble on <span></span><math></math>, which originates in random matrix theory. We extend results of Beltrán, Marzo, and Ortega-Cerdà on the Riesz <span></span><math></math>-energy of the harmonic ensemble to the nonsingular regime <span></span><math></math>, and as a corollary find the expected value of the spherical cap <span></span><math></math> discrepancy via the Stolarsky invariance principle. We find the expected value of the <span></span><math></math> discrepancy with respect to axis-parallel boxes and Euclidean balls of the harmonic ensemble on <span></span><math></math>. We also show that the spherical ensemble and the harmonic ensemble on <span></span><math></math> and <span></span><math></math> with <span></span><math></math> points attain the optimal rate <span></span><math></math> in expectation in the Wasserstein metric <span></span><math></math>, in contrast to independent and identically distributed random points, which are known to lose a factor of <span></span><math></math>.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12245","citationCount":"0","resultStr":"{\"title\":\"Riesz energy, discrepancy, and optimal transport of determinantal point processes on the sphere and the flat torus\",\"authors\":\"Bence Borda,&nbsp;Peter Grabner,&nbsp;Ryan W. Matzke\",\"doi\":\"10.1112/mtk.12245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Determinantal point processes exhibit an inherent repulsive behavior, thus providing examples of very evenly distributed point sets on manifolds. In this paper, we study the so-called harmonic ensemble, defined in terms of Laplace eigenfunctions on the sphere <span></span><math></math> and the flat torus <span></span><math></math>, and the so-called spherical ensemble on <span></span><math></math>, which originates in random matrix theory. We extend results of Beltrán, Marzo, and Ortega-Cerdà on the Riesz <span></span><math></math>-energy of the harmonic ensemble to the nonsingular regime <span></span><math></math>, and as a corollary find the expected value of the spherical cap <span></span><math></math> discrepancy via the Stolarsky invariance principle. We find the expected value of the <span></span><math></math> discrepancy with respect to axis-parallel boxes and Euclidean balls of the harmonic ensemble on <span></span><math></math>. We also show that the spherical ensemble and the harmonic ensemble on <span></span><math></math> and <span></span><math></math> with <span></span><math></math> points attain the optimal rate <span></span><math></math> in expectation in the Wasserstein metric <span></span><math></math>, in contrast to independent and identically distributed random points, which are known to lose a factor of <span></span><math></math>.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12245\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12245\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

确定性点过程表现出固有的排斥行为,从而提供了流形上非常均匀分布的点集的例子。在本文中,我们研究了以球面和平面环面上的拉普拉斯特征函数定义的所谓谐波集合,以及源于随机矩阵理论的所谓球面集合。我们将贝尔特兰、马索和奥尔特加-塞尔达关于谐波集合的里兹能的结果扩展到了非奇异制度,并作为推论通过斯托拉斯基不变性原理找到了球顶差异的期望值。我们还找到了调和集合在......上与轴平行的盒和欧几里得球的差异的期望值。我们还证明了球面集合和调和集合上的和点在瓦瑟斯坦度量中达到了期望中的最优率,这与独立且同分布的随机点相反,众所周知,独立且同分布的随机点会损失......倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riesz energy, discrepancy, and optimal transport of determinantal point processes on the sphere and the flat torus

Determinantal point processes exhibit an inherent repulsive behavior, thus providing examples of very evenly distributed point sets on manifolds. In this paper, we study the so-called harmonic ensemble, defined in terms of Laplace eigenfunctions on the sphere and the flat torus , and the so-called spherical ensemble on , which originates in random matrix theory. We extend results of Beltrán, Marzo, and Ortega-Cerdà on the Riesz -energy of the harmonic ensemble to the nonsingular regime , and as a corollary find the expected value of the spherical cap discrepancy via the Stolarsky invariance principle. We find the expected value of the discrepancy with respect to axis-parallel boxes and Euclidean balls of the harmonic ensemble on . We also show that the spherical ensemble and the harmonic ensemble on and with points attain the optimal rate in expectation in the Wasserstein metric , in contrast to independent and identically distributed random points, which are known to lose a factor of .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信