On a conjecture of Graham on the -divisibility of central binomial coefficients

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-04-18 DOI:10.1112/mtk.12249
Ernie Croot, Hamed Mousavi, Maxie Schmidt
{"title":"On a conjecture of Graham on the -divisibility of central binomial coefficients","authors":"Ernie Croot,&nbsp;Hamed Mousavi,&nbsp;Maxie Schmidt","doi":"10.1112/mtk.12249","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> be pairwise distinct primes. From a theorem of Kummer, each prime <span></span><math></math> can divide <span></span><math></math> at most <span></span><math></math> times. We show that, for all <span></span><math></math>, if <span></span><math></math> are sufficiently large in terms of <span></span><math></math> and <span></span><math></math>, then there exist infinitely many positive integers <span></span><math></math> such that each <span></span><math></math> divides <span></span><math></math> at most <span></span><math></math> times. We connect this result to a famous conjecture by Graham on whether there are infinitely many integers <span></span><math></math> such that <span></span><math></math> is coprime to 105.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12249","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12249","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let be pairwise distinct primes. From a theorem of Kummer, each prime can divide at most times. We show that, for all , if are sufficiently large in terms of and , then there exist infinitely many positive integers such that each divides at most times. We connect this result to a famous conjecture by Graham on whether there are infinitely many integers such that is coprime to 105.

格雷厄姆关于中心二项式系数可分性的猜想
设是一对不同的质数。根据库默尔的定理,每个素数最多可以整除多次。我们证明,对于所有 ,如果 和 都足够大,那么存在无穷多个正整数,使得每个正整数都能最多次整除。我们将这一结果与格雷厄姆的一个著名猜想联系起来,即是否存在无限多的整数,使得 与 105 共素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信