关于一般序列的林德洛夫假设

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-02-05 DOI:10.1112/mtk.12240
Frederik Broucke, Sebastian Weishäupl
{"title":"关于一般序列的林德洛夫假设","authors":"Frederik Broucke,&nbsp;Sebastian Weishäupl","doi":"10.1112/mtk.12240","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, Gonek, Graham, and Lee introduced a notion of the Lindelöf hypothesis (LH) for general sequences that coincides with the usual LH for the Riemann zeta function in the case of the sequence of positive integers. They made two conjectures: that LH should hold for every admissible sequence of positive integers, and that LH should hold for the “generic” admissible sequence of positive real numbers. In this paper, we give counterexamples to the first conjecture, and show that the second conjecture can be either true or false, depending on the meaning of “generic”: we construct probabilistic processes producing sequences satisfying LH with probability 1, and we construct Baire topological spaces of sequences for which the subspace of sequences satisfying LH is meagre. We also extend the main result of Gonek, Graham, and Lee, stating that the Riemann hypothesis is equivalent to LH for the sequence of prime numbers, to the context of Beurling generalized number systems.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Lindelöf hypothesis for general sequences\",\"authors\":\"Frederik Broucke,&nbsp;Sebastian Weishäupl\",\"doi\":\"10.1112/mtk.12240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent paper, Gonek, Graham, and Lee introduced a notion of the Lindelöf hypothesis (LH) for general sequences that coincides with the usual LH for the Riemann zeta function in the case of the sequence of positive integers. They made two conjectures: that LH should hold for every admissible sequence of positive integers, and that LH should hold for the “generic” admissible sequence of positive real numbers. In this paper, we give counterexamples to the first conjecture, and show that the second conjecture can be either true or false, depending on the meaning of “generic”: we construct probabilistic processes producing sequences satisfying LH with probability 1, and we construct Baire topological spaces of sequences for which the subspace of sequences satisfying LH is meagre. We also extend the main result of Gonek, Graham, and Lee, stating that the Riemann hypothesis is equivalent to LH for the sequence of prime numbers, to the context of Beurling generalized number systems.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12240\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12240","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的一篇论文中,戈内克、格雷厄姆和李提出了一个关于一般序列的林德洛夫假设(LH)概念,它与正整数序列情况下黎曼zeta函数的通常 LH 相吻合。他们提出了两个猜想:林德洛夫假设应适用于每一个可容许的正整数序列;林德洛夫假设应适用于 "一般 "可容许的正实数序列。在本文中,我们给出了第一个猜想的反例,并证明了第二个猜想可真可假,这取决于 "通用 "的含义:我们构造了产生满足 LH 的序列的概率为 1 的概率过程,并构造了满足 LH 的序列的子空间很小的序列的拜尔拓扑空间。我们还将戈内克、格雷厄姆和李的主要结果,即黎曼假设等价于素数序列的 LH,扩展到贝林广义数系统的背景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Lindelöf hypothesis for general sequences

In a recent paper, Gonek, Graham, and Lee introduced a notion of the Lindelöf hypothesis (LH) for general sequences that coincides with the usual LH for the Riemann zeta function in the case of the sequence of positive integers. They made two conjectures: that LH should hold for every admissible sequence of positive integers, and that LH should hold for the “generic” admissible sequence of positive real numbers. In this paper, we give counterexamples to the first conjecture, and show that the second conjecture can be either true or false, depending on the meaning of “generic”: we construct probabilistic processes producing sequences satisfying LH with probability 1, and we construct Baire topological spaces of sequences for which the subspace of sequences satisfying LH is meagre. We also extend the main result of Gonek, Graham, and Lee, stating that the Riemann hypothesis is equivalent to LH for the sequence of prime numbers, to the context of Beurling generalized number systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信