通过螺旋线方法进行混合正态估计

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-04-21 DOI:10.1112/mtk.12248
Cristina Benea, Camil Muscalu
{"title":"通过螺旋线方法进行混合正态估计","authors":"Cristina Benea,&nbsp;Camil Muscalu","doi":"10.1112/mtk.12248","DOIUrl":null,"url":null,"abstract":"<p>We prove multiple vector-valued and mixed-norm estimates for multilinear operators in <span></span><math></math>, more precisely for multilinear operators <span></span><math></math> associated to a symbol singular along a <span></span><math></math>-dimensional space and for multilinear variants of the Hardy-Littlewood maximal function. When the dimension <span></span><math></math>, the input functions are not necessarily in <span></span><math></math> and can instead be elements of mixed-norm spaces <span></span><math></math>.</p><p>Such a result has interesting consequences especially when <span></span><math></math> spaces are involved. Among these, we mention mixed-norm Loomis-Whitney-type inequalities for singular integrals, as well as the boundedness of multilinear operators associated to certain rational symbols. We also present examples of operators that are not susceptible to isotropic rescaling, which only satisfy “purely mixed-norm estimates” and no classical <span></span><math></math> estimates.</p><p>Relying on previous estimates implied by the helicoidal method, we also prove (non-mixed-norm) estimates for generic singular Brascamp-Lieb-type inequalities.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12248","citationCount":"0","resultStr":"{\"title\":\"Mixed-norm estimates via the helicoidal method\",\"authors\":\"Cristina Benea,&nbsp;Camil Muscalu\",\"doi\":\"10.1112/mtk.12248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove multiple vector-valued and mixed-norm estimates for multilinear operators in <span></span><math></math>, more precisely for multilinear operators <span></span><math></math> associated to a symbol singular along a <span></span><math></math>-dimensional space and for multilinear variants of the Hardy-Littlewood maximal function. When the dimension <span></span><math></math>, the input functions are not necessarily in <span></span><math></math> and can instead be elements of mixed-norm spaces <span></span><math></math>.</p><p>Such a result has interesting consequences especially when <span></span><math></math> spaces are involved. Among these, we mention mixed-norm Loomis-Whitney-type inequalities for singular integrals, as well as the boundedness of multilinear operators associated to certain rational symbols. We also present examples of operators that are not susceptible to isotropic rescaling, which only satisfy “purely mixed-norm estimates” and no classical <span></span><math></math> estimates.</p><p>Relying on previous estimates implied by the helicoidal method, we also prove (non-mixed-norm) estimates for generic singular Brascamp-Lieb-type inequalities.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12248\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12248\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12248","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了多线性算子在 ,更确切地说,是与沿着 - 维空间的符号奇异相关的多线性算子,以及哈代-利特尔伍德最大函数的多线性变体的多重向量值和混合正态估计。当维度为 ,输入函数不一定在 ,而可以是混合规范空间的元素......这一结果具有有趣的后果,特别是当涉及空间时。其中,我们提到了奇异积分的混合规范卢米斯-惠特尼型不等式,以及与某些有理符号相关的多线性算子的有界性。我们还举例说明了不易受各向同性重缩放影响的算子,它们只满足 "纯混合规范估计",而不满足经典估计。根据螺旋线方法隐含的先前估计,我们还证明了一般奇异布拉斯坎普-李卜型不等式的(非混合规范)估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mixed-norm estimates via the helicoidal method

Mixed-norm estimates via the helicoidal method

We prove multiple vector-valued and mixed-norm estimates for multilinear operators in , more precisely for multilinear operators associated to a symbol singular along a -dimensional space and for multilinear variants of the Hardy-Littlewood maximal function. When the dimension , the input functions are not necessarily in and can instead be elements of mixed-norm spaces .

Such a result has interesting consequences especially when spaces are involved. Among these, we mention mixed-norm Loomis-Whitney-type inequalities for singular integrals, as well as the boundedness of multilinear operators associated to certain rational symbols. We also present examples of operators that are not susceptible to isotropic rescaling, which only satisfy “purely mixed-norm estimates” and no classical  estimates.

Relying on previous estimates implied by the helicoidal method, we also prove (non-mixed-norm) estimates for generic singular Brascamp-Lieb-type inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信