Theta 函数的高矩和特征和

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-02-14 DOI:10.1112/mtk.12242
Barnabás Szabó
{"title":"Theta 函数的高矩和特征和","authors":"Barnabás Szabó","doi":"10.1112/mtk.12242","DOIUrl":null,"url":null,"abstract":"<p>Assuming the Generalised Riemann Hypothesis, we prove a sharp upper bound on moments of shifted Dirichlet <i>L</i>-functions. We use this to obtain conditional upper bounds on high moments of theta functions. Both of these results strengthen theorems of Munsch, who proved almost sharp upper bounds for these quantities. The main new ingredient of our proof comes from a paper of Harper, who showed the related result <math></math> for all <math></math> under the Riemann Hypothesis. Finally, we obtain a sharp conditional upper bound on high moments of character sums of arbitrary length.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12242","citationCount":"0","resultStr":"{\"title\":\"High moments of theta functions and character sums\",\"authors\":\"Barnabás Szabó\",\"doi\":\"10.1112/mtk.12242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assuming the Generalised Riemann Hypothesis, we prove a sharp upper bound on moments of shifted Dirichlet <i>L</i>-functions. We use this to obtain conditional upper bounds on high moments of theta functions. Both of these results strengthen theorems of Munsch, who proved almost sharp upper bounds for these quantities. The main new ingredient of our proof comes from a paper of Harper, who showed the related result <math></math> for all <math></math> under the Riemann Hypothesis. Finally, we obtain a sharp conditional upper bound on high moments of character sums of arbitrary length.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12242\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12242\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12242","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设存在广义黎曼假设,我们证明了移位狄利克特 L 函数矩的尖锐上界。我们利用它得到了 Theta 函数高矩数的条件上界。这两个结果都加强了芒施的定理,芒施证明了这些量的近乎尖锐的上界。我们证明的主要新成分来自哈珀的一篇论文,他证明了黎曼假设下的所有相关结果。最后,我们得到了任意长度特征和的高矩数的尖锐条件上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High moments of theta functions and character sums

Assuming the Generalised Riemann Hypothesis, we prove a sharp upper bound on moments of shifted Dirichlet L-functions. We use this to obtain conditional upper bounds on high moments of theta functions. Both of these results strengthen theorems of Munsch, who proved almost sharp upper bounds for these quantities. The main new ingredient of our proof comes from a paper of Harper, who showed the related result for all under the Riemann Hypothesis. Finally, we obtain a sharp conditional upper bound on high moments of character sums of arbitrary length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信