On the entropy and information of Gaussian mixtures

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-03-28 DOI:10.1112/mtk.12246
Alexandros Eskenazis, Lampros Gavalakis
{"title":"On the entropy and information of Gaussian mixtures","authors":"Alexandros Eskenazis,&nbsp;Lampros Gavalakis","doi":"10.1112/mtk.12246","DOIUrl":null,"url":null,"abstract":"<p>We establish several convexity properties for the entropy and Fisher information of mixtures of centred Gaussian distributions. Firstly, we prove that if <span></span><math></math> are independent scalar Gaussian mixtures, then the entropy of <span></span><math></math> is concave in <span></span><math></math>, thus confirming a conjecture of Ball, Nayar and Tkocz (2016) for this class of random variables. In fact, we prove a generalisation of this assertion which also strengthens a result of Eskenazis, Nayar and Tkocz (2018). For the Fisher information, we extend a convexity result of Bobkov (2022) by showing that the Fisher information matrix is operator convex as a matrix-valued function acting on densities of mixtures in <span></span><math></math>. As an application, we establish rates for the convergence of the Fisher information matrix of the sum of weighted i.i.d. Gaussian mixtures in the operator norm along the central limit theorem under mild moment assumptions.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12246","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We establish several convexity properties for the entropy and Fisher information of mixtures of centred Gaussian distributions. Firstly, we prove that if are independent scalar Gaussian mixtures, then the entropy of is concave in , thus confirming a conjecture of Ball, Nayar and Tkocz (2016) for this class of random variables. In fact, we prove a generalisation of this assertion which also strengthens a result of Eskenazis, Nayar and Tkocz (2018). For the Fisher information, we extend a convexity result of Bobkov (2022) by showing that the Fisher information matrix is operator convex as a matrix-valued function acting on densities of mixtures in . As an application, we establish rates for the convergence of the Fisher information matrix of the sum of weighted i.i.d. Gaussian mixtures in the operator norm along the central limit theorem under mild moment assumptions.

论高斯混合物的熵和信息
我们为居中高斯分布混合物的熵和费雪信息建立了几个凸性质。首先,我们证明,如果是独立标量高斯混合物,那么其熵在 , , 是凹的,从而证实了 Ball、Nayar 和 Tkocz(2016 年)对这类随机变量的猜想。事实上,我们证明了这一论断的广义化,这也加强了 Eskenazis、Nayar 和 Tkocz(2018)的一个结果。对于费雪信息,我们扩展了 Bobkov(2022 年)的一个凸性结果,证明费雪信息矩阵作为作用于......中混合物密度的矩阵值函数,是算子凸性的。作为应用,我们在温和矩假设下,根据中心极限定理建立了加权 i.i.d. 高斯混合物之和的 Fisher 信息矩阵在算子规范中的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信