{"title":"Upcycling prawn shells: Chitosan–carbon nanotube nanocomposites with boosted magnetic and electrical properties","authors":"Rabiul Awal, Md. Al-Mamun, Nasrin Jewena, Jahirul Islam Khandaker, Nilufer Yesmin Tanisa, Shamim Ahmed, Fahim Shahriar, Md. Mahbubul Haque","doi":"10.1049/mna2.12197","DOIUrl":"10.1049/mna2.12197","url":null,"abstract":"<p>Multi-walled carbon nanotubes (MWCNTs) were successfully synthesized and functionalized by chemical vapour deposition and acid reflux methods, respectively. Chitosan (CTS) was prepared by a chemical extraction method from waste prawn shells. Various weight fractions of functionalized multi-walled carbon nanotubes (f-MWCNTs) have been used as reinforcing agent in CTS biopolymer matrix. Fourier transform infrared spectroscopy analysis was done, which confirms the presence of absorption bands of the various functional groups of chitin, CTS, and MWCNTs. Raman spectra revealed the quality of MWCNTs, the extent of their functionalization, and the quality of nanocomposites. The X-ray diffraction analysis showed the distinctive peaks for f-MWCNTs’ and also revealed the formation of CTS/f-MWCNTs nanocomposites. Transmission Electron Microscopy (TEM) analysis also exhibited that the CTS/f-MWCNTs nanoparticles have a well-defined crystalline structure. The highest coercivity and magnetization (Ms) of the CTS/5%f-MWCNTs nanocomposite are 602 Oe and 0.1202 emu/g, respectively that have been enhanced by 3.83 and 5.27 times compared to the pure CTS respectively. It showed that the conductivity is getting higher with the addition of f-MWCNTs in the CTS matrix. CTS/5% f-MWCNTs composites exhibit the highest conductivity than other composites and the conductivity of CTS/5% f-MWCNTs composite is 4.0×10<sup>−4</sup> S/m.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12197","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Sharifalhoseini, Gholamhasan Vaezi, Ali Es-haghi, Hooman Shajiee
{"title":"Silver-coated copper nanocomposites synthesis using the essence of Foeniculum vulgare mill and estimation of its antibacterial and cytotoxicity effects","authors":"Mohammad Sharifalhoseini, Gholamhasan Vaezi, Ali Es-haghi, Hooman Shajiee","doi":"10.1049/mna2.12196","DOIUrl":"10.1049/mna2.12196","url":null,"abstract":"<p>The Cu<sub>3.96</sub>Ag<sub>0.04</sub> nanoparticles were synthesized using the essence of Foeniculum vulgare Mill for the first time. The particles were fully analysed by conventional characterization methods such as powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS). The results have shown the crystal structure of silver copper particles and the crystallite size obtained by the Scherer equation was 23.2 nm. The TEM images interestingly displayed the formation of nanorods in the solid phase with nearly 5 nm widths and different lengths up to 100 nm. The hydrodynamic size is also compatible with the solid phase and crystallite sizes. Biologically, the particles were tested against infective gram negative and gram positive bacteria. The synthetic NPs show strong antibacterial properties against gram negative bacteria. Also, the synthesized nanoparticles had an inhibitory effect on the growth of cancer cells, which was dose- and time-dependent.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Reza Karampoor, Abbas Bahrami, Masoud Atapour
{"title":"Towards an antibacterial self-healing coating based on linseed oil/ZnO nanoparticles repair agent, encapsulated in polyurea formaldehyde microcapsules","authors":"Mohammad Reza Karampoor, Abbas Bahrami, Masoud Atapour","doi":"10.1049/mna2.12195","DOIUrl":"10.1049/mna2.12195","url":null,"abstract":"<p>This research aims at investigating the idea of anti-bacterial self-healing coatings based on polyurea formaldehyde microcapsules (MCs), with the repair agent being ZnO-containing linseed oil. ZnO nanoparticles were added to the repair agent with the idea of developing an antibacterial coating. The idea was to entrap some ZnO nanoparticles inside microcapsules, aiming for some local release of ZnO nanoparticles where the coating is damaged. The corrosion resistances of the coatings were studied using the Tafel polarization test. The structure of the coating samples was evaluated using a scanning electron microscope. To check the antibacterial properties of ZnO-containing self-healing samples, <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> bacteria were used. Results showed that ZnO nanoparticles were distributed not only inside microcapsules but also over the walls, inferring that overall protection can also be attained in addition to local anti-bacterial performance. Results showed that the proposed multi-functional coating has promising antibacterial and self-healing responses.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12195","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140340342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural and temperature dependent dielectric behaviour of BxFe(3−x)O4 nanoferrite particles","authors":"Paramesh Donta","doi":"10.1049/mna2.12194","DOIUrl":"10.1049/mna2.12194","url":null,"abstract":"<p>The auto-combustion technique was employed to synthesize nano particles of B<i><sub>x</sub></i>Fe<sub>(3−</sub><i><sub>x</sub></i><sub>)</sub>O<sub>4</sub> (<i>x</i> = 0.0, 0.7, 1.18, 1.36 and 1.54). The resulting structural and dielectric properties of the boron doped Fe<sub>3</sub>O<sub>4</sub> were evaluated. XRD analysis confirmed the presence of a single spinel structure with crystallite dimensions ranging from 21.18 to 26.43 nm and lattice parameters of 8.211 to 8.487 Ǻ. The morphological images revealed homogenous and spherical grain sizes, while EDX confirmed the presence of constituent elements used. The X-ray density increased whereas the bulk density and the porosity decreased with boron substitution. The study of dielectric properties and AC conductivity (<i>σ<sub>AC</sub></i>) was demonstrated and the AC conductivity decreased with increasing boron concentration, indicating a hopping mechanism. Moreover, noticeable variations in dielectric loss, AC conductivity, and dielectric permittivity with temperature and frequency were observed. These observations were attributed to the Maxwell–Wagner interfacial polarization and the hopping of charges between Fe<sup>3+</sup> and Fe<sup>2+</sup> ions.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 3","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12194","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Neilson, Veronica Granata, Ofelia Durante, Christopher Ausbeck, Timothy F. Bennett, Fabrizio Bobba, Marco Cannavacciuolo, Giovanni Carapella, Francesco Chiadini, Riccardo DeSalvo, Roberta De Simone, Cinzia Di Giorgio, Rosalba Fittipaldi, Vincenzo Fiumara, Brecken Larsen, Tugdual LeBohec, Seth Linker, Alberto Micco, Marina Mondin, Bhavna Nayak, Antonio Vecchione, Innocenzo M. Pinto, Vincenzo Pierro
{"title":"Optimizing nanostructure deposition process for optical applications","authors":"Joshua Neilson, Veronica Granata, Ofelia Durante, Christopher Ausbeck, Timothy F. Bennett, Fabrizio Bobba, Marco Cannavacciuolo, Giovanni Carapella, Francesco Chiadini, Riccardo DeSalvo, Roberta De Simone, Cinzia Di Giorgio, Rosalba Fittipaldi, Vincenzo Fiumara, Brecken Larsen, Tugdual LeBohec, Seth Linker, Alberto Micco, Marina Mondin, Bhavna Nayak, Antonio Vecchione, Innocenzo M. Pinto, Vincenzo Pierro","doi":"10.1049/mna2.12186","DOIUrl":"10.1049/mna2.12186","url":null,"abstract":"<p>In many physics and engineering applications requiring exceptional precision, the presence of highly reflective coatings with low thermal noise is of utmost significance. These applications include high-resolution spectroscopy, optical atomic clocks, and investigations into fundamental physics such as gravitational wave detection. Enhancing sensitivity in these experiments relies on effectively reducing the thermal noise originating from the coatings. While ion beam sputtering (IBS) is typically employed for fabricating such coatings, electron beam evaporation can also be utilized and offers certain advantages over IBS, such as versatility and speed. However, a significant challenge in the fabrication process has been the limitations of the quartz crystal monitor used to measure the thickness of the deposited layers. This paper showcases how, through hardware and software upgrades, it becomes achievable to create high-density coatings with layers as thin as a few angstroms by using electron beam evaporation (OAC75F coater) with a deposition rate of 1 Å/s and ion-assisted source with a gas mixture of oxygen and argon, using a pressure of about 4 × 10<sup>−4</sup> mbar. Furthermore, these upgrades enable the attainment of high levels of precision and uniformity in the thickness of the coatings.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A transformerless Z-source photovoltaic grid-connected inverter with coupled inductor coil","authors":"Yunzhong Dai, Huaiyu Zhang","doi":"10.1049/mna2.12193","DOIUrl":"10.1049/mna2.12193","url":null,"abstract":"<p>The quasi-Z-source H-bridge grid-connected inverter (QHGCI) is well known for its advantages of the void of the shoot-through problem and the high DC-voltage utilization. But the existence of the common-mode leakage current in the power frequency cycle, lower power density, and higher thermal stress make it hard applicable to the grid-penetrating application. Thus with the purpose to conquer the problem relating to the QHGCI, an innovative transformerless Z-source photovoltaic grid-connected inverter with a coupled inductor coil (TZPGCI-CIC) is proposed. The circuitry topology and an unipolar sine pulse width modulation strategy are first introduced in short. Thereafter, the common-mode voltage in the whole working process is derived and evaluated through the detailed operating mode analysis, in which a constant value of it has been theoretically revealed. Lastly, a prototype platform of TZPGCI-CIC is set up and its good performance on leakage current suppression, and lower thermal stress are validated with the experimental results.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12193","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140000684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Li, Xiaotao Wang, Dan Wu, Dehao Kong, Han Wu, Lai Mang, Bo Liao, O. Tegus, Yongjun Cao, Oimod Haschuluu
{"title":"Study on high voltage (5 V) spinel lithium manganese oxide LiNi0.5Mn1.5O4 by doping niobium","authors":"Wei Li, Xiaotao Wang, Dan Wu, Dehao Kong, Han Wu, Lai Mang, Bo Liao, O. Tegus, Yongjun Cao, Oimod Haschuluu","doi":"10.1049/mna2.12192","DOIUrl":"10.1049/mna2.12192","url":null,"abstract":"<p>The effect of niobium ions with high-valence doping on high-voltage LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> (LNMO) materials was investigated. LiNi<sub>0.5</sub>Mn<sub>1.5−</sub><i><sub>x</sub></i>Nb<i><sub>x</sub></i>O<sub>4</sub> was prepared by doping high-valent niobium ions into LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> material using the organic assisted combustion method. The experimental samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical impedance (EI), and cyclic voltammetry (CV) analysis. The experimental results show that -doping with high-valence niobium ions changes the orientation of the crystal plane growth of spinel particles, and the morphology of these particles changes from the octahedral shape before doping to the spherical shape after doping. With the increase in doping amount, the crystal structure changes gradually, resulting in the Li<sub>0.96</sub>Nb<sub>1.01</sub>O<sub>3</sub> impurity phase. The doping of high valence-niobium ions increases the content of Mn<sup>3+</sup> in the material, resulting in the appearance of a 4 V discharge platform and the formation of a 4.7 and 4 V discharge platforms. The doping of Nb can improve the cycling stability of LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> material, but the specific capacity of the material is reduced.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139993902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengru Liu, Xiaoxue Du, Jingyi Liu, Guangshuo Wang, Jiajia Yang, Xueling Wang, Shuai Han, Zhongchao Huo
{"title":"Novel rod-like carbon nanomaterials as near infrared-responsive drug delivery system for potential anticancer applications","authors":"Mengru Liu, Xiaoxue Du, Jingyi Liu, Guangshuo Wang, Jiajia Yang, Xueling Wang, Shuai Han, Zhongchao Huo","doi":"10.1049/mna2.12190","DOIUrl":"10.1049/mna2.12190","url":null,"abstract":"<p>The combination of chemotherapy and photothermal therapy shows great potential in cancer treatment, and the carbon nanomaterials have been attracted great attention in biomedical technology. However, it is still a great challenge to design stimuli-responsive nano-carbon-based drug release systems with integrated functions. In this paper, rod-like carbon nanomaterials (RCNs) were prepared by the soft template hydrothermal method with glucose as raw materials, which were proved to have high photothermal efficiency (∼23.7%), as well as good biocompatibility and excellent drug-loading capacity. After that, RCNs were used to load doxorubicin (DOX) as DOX@RCNs for integrated photothermal/chemotherapy towards cancer, which demonstrated 52.2% higher cancer cell killing efficiency than that of RCNs under near infrared (NIR) irradiation in vitro. The authors’ approach provided a novel NIR-responsive nano platform for combined photothermal/chemotherapy towards cancer, which was considered to be of great potential in anticancer applications.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139550414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of nitrogen-doped carbon materials by orthogonal array design for supercapacitors","authors":"Cungui Zhong, Dayong Liu","doi":"10.1049/mna2.12189","DOIUrl":"10.1049/mna2.12189","url":null,"abstract":"<p>Here, the authors report a practical method for preparing nitrogen-doped carbon materials using an orthogonal array design. The material with the highest specific capacitance value of 262 F·g<sup>−1</sup> at a current density of 1 A·g<sup>−1</sup> was obtained under the conditions (KOH as activation agent, activation temperature of 600°C, activation time of 3 h, respectively). Its high electrochemical properties are attributed to its high surface area and additional pseudo-capacitance. After 5000 cycles, the specific capacitance remained 92.8%, with good cycle stability. Textural characterization of the carbon materials was performed using N<sub>2</sub> adsorption/desorption and scanning electron microscopy.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139550421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rabiul Awal, Nilufer Yesmin Tanisa, Md. Arifur Rahman, Shamim Ahmed
{"title":"Preparation of nanostructured cuprous oxide (Cu2O) absorber layer for photovoltaic application","authors":"Rabiul Awal, Nilufer Yesmin Tanisa, Md. Arifur Rahman, Shamim Ahmed","doi":"10.1049/mna2.12188","DOIUrl":"10.1049/mna2.12188","url":null,"abstract":"<p>In this investigation, a nanostructured Cu<sub>2</sub>O thin film absorber layer is electrodeposited, exploring the impact of varying negative applied voltages and deposition time. Notably, the Cu<sub>2</sub>O thin film demonstrated optimal absorbance at −0.95 V, contrasting sharply with a minimum at −0.97 V. The authors' findings underscore that the peak absorbance was achieved at −0.95 V, coinciding with the lowest transmittance observed after 80 min of deposition, aligning with a maximal absorption coefficient of 21 × 10<sup>3</sup> cm<sup>−1</sup>. At a deposition time of 5 min, the Cu<sub>2</sub>O thin film exhibited a noteworthy maximum Urbach energy of 2.00 eV and a minimum steepness parameter of 0.013. In contrast, the lowest Urbach energy was recorded at 0.34 eV, with the highest steepness parameter occurring at an applied voltage of 0.93 V. Furthermore, this study revealed a gradual increase in the refractive index with higher applied voltages, reaching its pinnacle at −1.5 V. These results collectively emphasize the nuanced interplay between applied voltage, deposition time and the optical properties of the nanostructured Cu<sub>2</sub>O thin film. The observed trends hold significant implications for optimizing the performance of thin film absorber layers, particularly in the context of enhancing absorbance and tailoring optical characteristics for specific applications.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}