Marine genomics最新文献

筛选
英文 中文
Genomic analysis of Alteromonas sp. M12 isolated from the Mariana Trench reveals its role in dimethylsulfoniopropionate cycling 从马里亚纳海沟分离的 Alteromonas sp.
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-05-07 DOI: 10.1016/j.margen.2024.101112
Yue Lin , Min Zhang , Yu-Xiang Lai , Teng Liu , Meng Meng , Yan Sun , Yu Wang , Qing-Yu Dong , Chen-Xi Li , Meng-Xue Yu , Jin Cheng , Shu-Jun Liu , Xuan Shao , Nan Zhang , Chun-Yang Li
{"title":"Genomic analysis of Alteromonas sp. M12 isolated from the Mariana Trench reveals its role in dimethylsulfoniopropionate cycling","authors":"Yue Lin ,&nbsp;Min Zhang ,&nbsp;Yu-Xiang Lai ,&nbsp;Teng Liu ,&nbsp;Meng Meng ,&nbsp;Yan Sun ,&nbsp;Yu Wang ,&nbsp;Qing-Yu Dong ,&nbsp;Chen-Xi Li ,&nbsp;Meng-Xue Yu ,&nbsp;Jin Cheng ,&nbsp;Shu-Jun Liu ,&nbsp;Xuan Shao ,&nbsp;Nan Zhang ,&nbsp;Chun-Yang Li","doi":"10.1016/j.margen.2024.101112","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101112","url":null,"abstract":"<div><p>Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur molecule in marine environments with important roles in stress tolerance, global carbon and sulfur cycling, and chemotaxis. It is the main precursor of the climate active gas dimethyl sulfide (DMS), which is the greatest natural source of bio‑sulfur transferred from ocean to atmosphere. <em>Alteromonas</em> sp. M12, a Gram-negative and aerobic bacterium, was isolated from the seawater samples collected from the Mariana Trench at the depth of 2500 m. Here, we report the complete genome sequence of strain M12 and its genomic characteristics to import and utilize DMSP<em>.</em> The genome of strain M12 contains one circular chromosome (5,012,782 bp) with the GC content of 40.88%. <em>Alteromonas</em> sp. M12 can grow with DMSP as a sole carbon source, and produced DMS with DMSP as a precursor. Genomic analysis showed that strain M12 contained a set of genes involved in the downstream steps of DMSP cleavage, but no known genes encoding DMSP transporters or DMSP lyases. The results indicated that this strain contained novel DMSP transport and cleavage genes in its genome which warrants further investigation. The import of DMSP into cells may be a strategy of strain M12 to adapt the hydrostatic pressure environment in the Mariana Trench, as DMSP can be used as a hydrostatic pressure protectant. This study sheds light on the catabolism of DMSP by deep-sea bacteria.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140879643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete genome sequencing of Hortaea werneckii M-3 for identifying polyester polyurethane degrading enzymes 对 Hortaea werneckii M-3 进行全基因组测序以确定聚酯聚氨酯降解酶
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-05-02 DOI: 10.1016/j.margen.2024.101111
Minghuang Ling , Kai Zhang , Juan Hu , Xiaomei Huang , Gaili Fan , Hans-Peter Grossart , Zhuhua Luo
{"title":"Complete genome sequencing of Hortaea werneckii M-3 for identifying polyester polyurethane degrading enzymes","authors":"Minghuang Ling ,&nbsp;Kai Zhang ,&nbsp;Juan Hu ,&nbsp;Xiaomei Huang ,&nbsp;Gaili Fan ,&nbsp;Hans-Peter Grossart ,&nbsp;Zhuhua Luo","doi":"10.1016/j.margen.2024.101111","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101111","url":null,"abstract":"<div><p><em>Hortaea werneckii</em> M-3, a black yeast isolated from the marine sediment of the West Pacific, can utilize polyester polyurethane (PU, Impranil DLN) as a sole carbon source. Here, we present the complete genome of <em>Hortaea werneckii</em> M-3 with the focus on PU degradation enzymes. The total genome size is 38,167,921 bp, consisting of 186 contigs with a N50 length of 651,266 bp and a GC content of 53.06%. Genome annotation analysis predicts a total of 13,462 coding genes, which include 99 tRNAs and 105 rRNAs. Some genes encoding PU degrading enzymes including cutinase and urease are identified in this genome. The genome analysis of <em>Hortaea werneckii</em> M-3 will be helpful for further understanding the degradation mechanism of polyester PU by marine yeasts.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genome analysis of Rossellomorea sp. y25, a deep sea bacterium isolated from the sediments of South China Sea 从中国南海沉积物中分离出的深海细菌 Rossellomorea sp.
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-04-26 DOI: 10.1016/j.margen.2024.101110
Shijie Bai , Zhaosong Huang , Xue-Gong Li
{"title":"Genome analysis of Rossellomorea sp. y25, a deep sea bacterium isolated from the sediments of South China Sea","authors":"Shijie Bai ,&nbsp;Zhaosong Huang ,&nbsp;Xue-Gong Li","doi":"10.1016/j.margen.2024.101110","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101110","url":null,"abstract":"<div><p><em>Rossellomorea</em> sp. y25, a putative new species of yellow pigment-producing, aerobic and chemoheterotrophic bacterium belonging to the family <em>Bacillaceae</em>, was isolated from the sediments at the depth of 1829 m in the South China Sea. In this study, we present the complete genome sequences of strain y25, which consisted of only one circular chromosome with 4,633,006 bp and the content of G + C was 41.76%. A total of 4466 CDSs, 106 tRNA, 33 rRNA, and 101 sRNA genes were obtained. Genomic analysis of strain y25 showed that it has the ability to produce antioxidant carotenoids and a large number of heavy metal resistance genes, such as arsenic, cadmium and zinc. In addition, strain y25 contains a prophage that may contribute to host protection against lysis by related <em>Bacillus</em>-like phages. This is the first report of genome-wide information on a bacterium of the genus <em>Rossellomorea</em> isolated from the deep sea, providing insights into how microorganisms of this genus adapt to deep-sea environments.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar 牡蛎锌反应的转录组调查和生物标志物发现
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-04-10 DOI: 10.1016/j.margen.2024.101109
Clarissa P. Ferreira , Renato S. Moreira , Camila L.V. Bastolla , Miguel Saldaña-Serrano , Daína Lima , Carlos H.A.M. Gomes , Afonso C.D. Bainy , Karim H. Lüchmann
{"title":"Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar","authors":"Clarissa P. Ferreira ,&nbsp;Renato S. Moreira ,&nbsp;Camila L.V. Bastolla ,&nbsp;Miguel Saldaña-Serrano ,&nbsp;Daína Lima ,&nbsp;Carlos H.A.M. Gomes ,&nbsp;Afonso C.D. Bainy ,&nbsp;Karim H. Lüchmann","doi":"10.1016/j.margen.2024.101109","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101109","url":null,"abstract":"<div><p>In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster <em>Crassostrea gasar</em> provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of <em>C. gasar</em>, utilizing an array of bioinformatics workflow of CDTA (Combined <em>De Novo</em> Transcriptome Assembly) to generate a more representative assembly. In parallel, <em>C. gasar</em> individuals were exposed to two concentrations of zinc (850 and 4500 μg L<sup>−1</sup> Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus <em>Crassostrea</em>. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (<em>CHAC1</em> and <em>GCLC</em>-like), to zinc transporters (<em>ZNT2</em>-like), and metallothionein (<em>MT</em>-like). The evolutionary conservation of these genes within the <em>Crassostrea</em> genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 μg L<sup>−1</sup>, except for <em>GCLC</em>-like, which showed upregulation only at the higher concentration of 4500 μg L<sup>−1</sup>. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of <em>C. gasar</em> to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete genome analysis of copper resistant bacteria Pseudoalteromonas sp. CuT4–3 isolated from a deep-sea hydrothermal vent 从深海热液喷口分离的耐铜细菌 Pseudoalteromonas sp.
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-03-26 DOI: 10.1016/j.margen.2024.101106
Bowen Ji , Tong Yu , Xiang Zeng
{"title":"Complete genome analysis of copper resistant bacteria Pseudoalteromonas sp. CuT4–3 isolated from a deep-sea hydrothermal vent","authors":"Bowen Ji ,&nbsp;Tong Yu ,&nbsp;Xiang Zeng","doi":"10.1016/j.margen.2024.101106","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101106","url":null,"abstract":"<div><p><em>Pseudoalteromonas</em> sp. CuT4–3, a copper resistant bacterium, was isolated from deep-sea hydrothermal sulfides on the Southwest Indian Ridge (SWIR), is an aerobic, mesophilic and rod-shaped bacterium belonging to the family <em>Pseudoalteromonadaceae</em> (class <em>Gammaproteobacteria</em>, order <em>Alteromonadales</em>). In this study, we present the complete genome sequence of strain CuT4–3, which consists of a single circular chromosome comprising 3,660,538 nucleotides with 41.05% G + C content and two circular plasmids comprising 792,064 nucleotides with 40.36% G + C content and 65,436 nucleotides with 41.50% G + C content. In total, 4078 protein coding genes, 105 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain CuT4–3 identified numerous genes related to heavy metal resistance (especially copper) and EPS production. The genome of strain CuT4–3 will be helpful for further understanding of its adaptive strategies, particularly its ability to resist heavy metal, in the deep-sea hydrothermal vent environment.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140296648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling Cobetia sp. D5 的基因组分析揭示了其在海洋硫循环中的作用
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-03-24 DOI: 10.1016/j.margen.2024.101108
Xiao-Mei Geng , Shi-Ning Cai , Hai-Xia Zhu , Zhi-Gang Tang , Chun-Yang Li , Hui-Hui Fu , Yi Zhang , Hai-Yan Cao , Peng Wang , Mei-Ling Sun
{"title":"Genomic analysis of Cobetia sp. D5 reveals its role in marine sulfur cycling","authors":"Xiao-Mei Geng ,&nbsp;Shi-Ning Cai ,&nbsp;Hai-Xia Zhu ,&nbsp;Zhi-Gang Tang ,&nbsp;Chun-Yang Li ,&nbsp;Hui-Hui Fu ,&nbsp;Yi Zhang ,&nbsp;Hai-Yan Cao ,&nbsp;Peng Wang ,&nbsp;Mei-Ling Sun","doi":"10.1016/j.margen.2024.101108","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101108","url":null,"abstract":"<div><p>Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain <em>Cobetia</em> sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of <em>Cobetia</em> bacteria. The study reports the whole genome sequence of <em>Cobetia</em> sp. D5 to understand its DMSP metabolism pathway. The genome of <em>Cobetia</em> sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that <em>Cobetia</em> sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of <em>Cobetia</em> sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140209177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic characteristics of nine Nitrospirota metagenome-assembled genomes in deep-sea sediments from East Pacific polymetallic nodules zone 东太平洋多金属结核区深海沉积物中九个硝螺菌元基因组的基因组特征
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-03-22 DOI: 10.1016/j.margen.2024.101107
Zhi-Hao Ding , Yue-Hong Wu
{"title":"Genomic characteristics of nine Nitrospirota metagenome-assembled genomes in deep-sea sediments from East Pacific polymetallic nodules zone","authors":"Zhi-Hao Ding ,&nbsp;Yue-Hong Wu","doi":"10.1016/j.margen.2024.101107","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101107","url":null,"abstract":"<div><p>Previously studies have reported that MAGs (Metagenome-assembled genomes) belong to “<em>Candidatus Manganitrophaceae</em>” of phylum <em>Nitrospirota</em> with chemolithoautotrophic manganese oxidation potential exist in freshwater and hydrothermal environments. However, <em>Nitrospirota</em> members with chemolithoautotrophic manganese oxidation potential have not been reported in other marine environments. Through metagenomic sequencing, assembly and binning, nine metagenome-assembled genomes belonging to <em>Nitrospirota</em> are recovered from sediment of different depths in the polymetallic nodule area. Through the key functional genes annotation results, we find that these <em>Nitrospirota</em> have limited potential to oxidize organic carbon because of incomplete tricarboxylic acid cycle and most of them (6/9) have carbon dioxide fixation potential through different pathway (rTCA, WL or CBB). One MAG belongs to order <em>Nitrospirales</em> has the potential to use manganese oxidation to obtain energy for carbon fixation. In addition to manganese ions, the oxidation of inorganic nitrogen, sulfur, hydrogen and carbon monoxide may also provide energy for the growth of these <em>Nitrospirota</em>. In addition, different metal ion transport systems can help those <em>Nitrospirota</em> to resist heavy metal in sediment. Our work expands the understanding of the metabolic potential of <em>Nitrospirota</em> in sediment of polymetallic nodule region and may contributes to promoting the study of chemolithoautotrophic manganese oxidation.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140187658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An historical “wreck”: A transcriptome assembly of the naval shipworm, Teredo navalis Linnaeus, 1978 历史上的 "沉船":海军船虫 Teredo navalis Linnaeus 的转录组组装,1978 年
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-02-27 DOI: 10.1016/j.margen.2024.101097
André Gomes-dos-Santos , Marcos Domingues , Raquel Ruivo , Elza Fonseca , Elsa Froufe , Diana Deyanova , João N. Franco , L. Filipe C. Castro
{"title":"An historical “wreck”: A transcriptome assembly of the naval shipworm, Teredo navalis Linnaeus, 1978","authors":"André Gomes-dos-Santos ,&nbsp;Marcos Domingues ,&nbsp;Raquel Ruivo ,&nbsp;Elza Fonseca ,&nbsp;Elsa Froufe ,&nbsp;Diana Deyanova ,&nbsp;João N. Franco ,&nbsp;L. Filipe C. Castro","doi":"10.1016/j.margen.2024.101097","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101097","url":null,"abstract":"<div><p>Historically famous for their negative impact on human-built marine wood structures, mollusc shipworms play a central ecological role in marine ecosystems. Their association with bacterial symbionts, providing cellulolytic and nitrogen-fixing activities, underscores their exceptional wood-eating and wood-boring behaviours, improving energy transfer and the recycling of essential nutrients locked in the wood cellulose. Importantly, from a molecular standpoint, a minute of <em>omic</em> resources are available from this lineage of Bivalvia. Here, we produced and assembled a transcriptome from the globally distributed naval shipworm, <em>Teredo navalis</em> (family Teredinidae). The transcriptome was obtained by sequencing the total RNA from five equidistant segments of the whole body of a <em>T. navalis</em> specimen. The quality of the produced assembly was accessed with several statistics, revealing a highly contiguous (1194 N50) and complete (over 90% BUSCO scores for Eukaryote and Metazoan databases) transcriptome, with nearly 38,000 predicted ORF, more than half being functionally annotated. Our findings pave the way to investigate the unique evolutionary biology of these highly modified bivalves and lay the foundation for an adequate gene annotation of a full genome sequence of the species.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139986022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complete genome sequence analysis of Bacillus velezensis A5, a promising biocontrol agent from the Pacific Ocean 来自太平洋的一种很有前途的生物控制剂--Bacillus velezensis A5 的全基因组序列分析
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-02-01 DOI: 10.1016/j.margen.2024.101087
Shunhua Ji , Yin Tian , Guangxin Xu , Yiqiang Chen , Jingjing Li , Teng Long , Wei He , Jianqiang Fan , Xixiang Tang
{"title":"Complete genome sequence analysis of Bacillus velezensis A5, a promising biocontrol agent from the Pacific Ocean","authors":"Shunhua Ji ,&nbsp;Yin Tian ,&nbsp;Guangxin Xu ,&nbsp;Yiqiang Chen ,&nbsp;Jingjing Li ,&nbsp;Teng Long ,&nbsp;Wei He ,&nbsp;Jianqiang Fan ,&nbsp;Xixiang Tang","doi":"10.1016/j.margen.2024.101087","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101087","url":null,"abstract":"<div><p>Tobacco bacterial wilt (TBW) caused by <em>Ralstonia solanacearum</em> is a serious soil-borne disease, which seriously damages the growth of tobacco crops. <em>Bacillus velezensis</em> A5 was isolated from 3000 m deep-sea sediments of the Pacific Ocean, and was found to be antagonistic to TBW. Here, we report the complete genome sequence of strain A5, which has a 4,000,699-bp single circular chromosome with 3827 genes and a G + C content of 46.44%, 87 tRNAs, and 27 rRNAs. A total of 12 gene clusters were identified in the genome of strain A5, which were responsible for the biosynthesis of antibacterial compounds, including surfactin, bacillaene, fengycin, difficidin, bacillibactin, and bacilysin. Additionally, strain A5 was found to contain a series of genes related to the biosynthesis of carbohydrate-active enzymes and secreted proteins. Our results indicate that strain A5 can be considered a promising biocontrol agent against TBW in agricultural fields.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139710176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo transcriptome sequencing and annotation of the Antarctic polychaete Microspio moorei (Spionidae) with its characterization of the heat stress-related proteins (HSP, SOD & CAT) 南极多毛目环节动物 Microspio moorei(匙吻鲟科)的全新转录组测序和注释及其热应激相关蛋白(HSP、SOD 和 CAT)的特征描述
IF 1.9 4区 生物学
Marine genomics Pub Date : 2024-02-01 DOI: 10.1016/j.margen.2024.101085
Idalyd Fonseca-González , Esteban Velasquez-Agudelo , Mario H. Londoño-Mesa , Javier C. Álvarez
{"title":"De novo transcriptome sequencing and annotation of the Antarctic polychaete Microspio moorei (Spionidae) with its characterization of the heat stress-related proteins (HSP, SOD & CAT)","authors":"Idalyd Fonseca-González ,&nbsp;Esteban Velasquez-Agudelo ,&nbsp;Mario H. Londoño-Mesa ,&nbsp;Javier C. Álvarez","doi":"10.1016/j.margen.2024.101085","DOIUrl":"https://doi.org/10.1016/j.margen.2024.101085","url":null,"abstract":"<div><p>We present a <em>de novo</em> transcriptome assembly for the non-model Antarctic polychaete worm <em>Microspio moorei</em> (Spionidae) collected during Antarctic field expedition in Fildes Bay, King George Island, Antarctic Peninsula, in 2017. Here, we report the first transcriptome reference array for <em>Microspio spp.</em> The gene sequences of the spionid worm were annotated from a wide range of functions (<em>i.e.</em>, biological, and metabolic processes, catalytic processes, and catalytic activity). HSP70, HSP90 SOD and CAT families were compared to reported annelid transcriptomes and proteomes. The phylogenetic analysis using COI, 16S, and 18S markers effectively clusters the species within the family. However, it also casts uncertainty on the monophyletic nature of the <em>Microspio</em> genera, indicating the necessity for additional data and potentially requiring a reevaluation of its grouping. Within these protein families, 3D model software was used to create one representative of their protein structures. Structural predictions were compared with related reported annelids living at different temperatures and a human X-ray reference. We found structural differences (RMSE &gt;1.8) between the human HSP proteins but no significant differences between the polychaete-predicted proteins (RMSE &lt;1.2). These results encourage further research of heat stress-related proteins, the development of genetic markers for climate change-induced temperature stress, and the study of the underlying mechanisms of the heat response. Moreover, these results motivate the extension of these findings to congeneric species.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1874778724000035/pdfft?md5=acd1b10e74769ae247fa80c6d3e833f3&pid=1-s2.0-S1874778724000035-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139653803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信