Genomic insights into Marinobacterium sediminicola CGMCC 1.7287T: A polyhydroxyalkanoate-producing bacterium isolated from marine sediment

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY
Meng-Ru Wang, Yuke Zhang, Zheng-Jun Li
{"title":"Genomic insights into Marinobacterium sediminicola CGMCC 1.7287T: A polyhydroxyalkanoate-producing bacterium isolated from marine sediment","authors":"Meng-Ru Wang,&nbsp;Yuke Zhang,&nbsp;Zheng-Jun Li","doi":"10.1016/j.margen.2025.101180","DOIUrl":null,"url":null,"abstract":"<div><div>Polyhydroxyalkanoate (PHA) is a promising polyester with superior properties including biodegradability, biocompatibility, and biorenewability. <em>Marinobacterium sediminicola</em> CGMCC 1.7287<sup>T</sup>, isolated from marine sediment in the East China Sea, has been found capable of producing PHA using volatile fatty acids as cost-effective substrates. Here, we report the genomic characteristics of <em>M. sediminicola</em> CGMCC 1.7287<sup>T</sup>, which possesses a circular chromosome of 3,554,135 bp with a GC content of 56.10 %. Gene annotation analysis revealed that the bacterium harbors enzymes involved in volatile fatty acids utilization, PHA synthesis, and ectoine accumulation. The presence of genes associated with ectoine synthesis suggests that this bacterium has stress resistance and cellular protection mechanism to adapt to saline environments. The genomic features provide important references for further genetic engineering of marine bacteria to effectively utilize volatile fatty acids for PHA production and enhance stress tolerance through ectoine accumulation.</div></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"80 ","pages":"Article 101180"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778725000169","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyhydroxyalkanoate (PHA) is a promising polyester with superior properties including biodegradability, biocompatibility, and biorenewability. Marinobacterium sediminicola CGMCC 1.7287T, isolated from marine sediment in the East China Sea, has been found capable of producing PHA using volatile fatty acids as cost-effective substrates. Here, we report the genomic characteristics of M. sediminicola CGMCC 1.7287T, which possesses a circular chromosome of 3,554,135 bp with a GC content of 56.10 %. Gene annotation analysis revealed that the bacterium harbors enzymes involved in volatile fatty acids utilization, PHA synthesis, and ectoine accumulation. The presence of genes associated with ectoine synthesis suggests that this bacterium has stress resistance and cellular protection mechanism to adapt to saline environments. The genomic features provide important references for further genetic engineering of marine bacteria to effectively utilize volatile fatty acids for PHA production and enhance stress tolerance through ectoine accumulation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine genomics
Marine genomics 生物-遗传学
CiteScore
3.60
自引率
5.30%
发文量
50
审稿时长
29 days
期刊介绍: The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include: • Population genomics and ecology • Evolutionary and developmental genomics • Comparative genomics • Metagenomics • Environmental genomics • Systems biology More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信