Bitna Bae , Nagamalleswara Rao Alluri , Cheol Min Kim , Jungho Ryu , Gwang Hyeon Kim , Hyeon Jun Park , Changyeon Baek , Min-Ku Lee , Gyoung-Ja Lee , Geon-Tae Hwang , Kwi-Il Park
{"title":"CoFe2O4-BaTiO3 core-shell-embedded flexible polymer composite as an efficient magnetoelectric energy harvester","authors":"Bitna Bae , Nagamalleswara Rao Alluri , Cheol Min Kim , Jungho Ryu , Gwang Hyeon Kim , Hyeon Jun Park , Changyeon Baek , Min-Ku Lee , Gyoung-Ja Lee , Geon-Tae Hwang , Kwi-Il Park","doi":"10.1016/j.mtphys.2024.101567","DOIUrl":"10.1016/j.mtphys.2024.101567","url":null,"abstract":"<div><div>Flexible magnetoelectric (ME) generators gained immense interest due to the broad applications in wearable and Internet of Things (IoT)-based devices. The key to achieving high energy conversion performance of 0–3 type ME composite films is the prevention of filler aggregation in the polymer matrix and accessing the full potential of intrinsic properties of filler. To achieve high performance, a flexible ME composite film was fabricated by homogeneous distribution of magnetostrictive CoFe<sub>2</sub>O<sub>4</sub>-BaTiO<sub>3</sub> core-shell (CBCS) fillers into piezoelectric polyvinylidene fluoride (PVDF) polymer. The ME composite film generates an enhanced energy conversion efficiency by optimizing the shell thickness of CBCS and maximizing the electroactive β-phase at the BaTiO<sub>3</sub> shell-PVDF interfacial region. The observed ME coefficient of the film reached up to 710 mV/cm∙Oe. Multiphysics simulations based on the finite element analysis were adopted to investigate the role of BaTiO<sub>3</sub> shell thickness on the performance of ME film. This study paves the way to achieve higher filler loading content in the ME composite films to develop an efficient, flexible ME generator for eco-friendly permanent power sources.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101567"},"PeriodicalIF":10.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Xu, Jihuai Wu, Qingshui Zheng, Lin Gao, Sheng Tang, Fuda Yu, Weihai Sun, Zhang Lan
{"title":"Efficient and stable perovskite solar cells based on multi-active sites 5-amino-1,3,4-thiadiazole-2-thiol modified interface","authors":"Jing Xu, Jihuai Wu, Qingshui Zheng, Lin Gao, Sheng Tang, Fuda Yu, Weihai Sun, Zhang Lan","doi":"10.1016/j.mtphys.2024.101564","DOIUrl":"10.1016/j.mtphys.2024.101564","url":null,"abstract":"<div><div>The highest certification efficiency of perovskite solar cells (PSCs) has reached 26.7 %. However, the high defect density on the surface of perovskite films prepared by low temperature solution method and the energy mismatch between the carrier transport layers and perovskite layer (PVK) greatly limit the performance improvement of PSCs. The introduction of passivating agent to modify the perovskite interface and grain boundary can reduce the defect density, coordinate the energy level effectively, and improve the efficiency and stability of devices. A Lewis base molecule 5-amino-1,3,4-thiadiazole-2-thiol (AMTD) with multiple active sites is introduced at the interface between PVK and hole transport layer (HTL). The electron-rich groups, such as = S, –S–, –NH<sub>2</sub>, –N on AMTD, passivate the positive electrical defects on the interface and grain boundary, and increase carrier transport efficiency. The interfacial energy level array is optimized to achieve more efficient charge transportation. In addition, the modified of AMTD has a significant protective effect on the perovskite, which inhibit the moisture erosion of in environment. Consequently, the AMTD-optimized device achieves a power conversion efficiency (PCE) of 24.13 %, compared to the efficiency of 21.62 % for pristine device. The stability of the devices is improved greatly.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101564"},"PeriodicalIF":10.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona Zebarjadi , Farjana Ferdous Tonni , Kazuaki Yazawa , Ali Shakouri
{"title":"Enhanced non-equilibrium Peltier cooling through electron gas expansion: A Monte Carlo simulation study","authors":"Mona Zebarjadi , Farjana Ferdous Tonni , Kazuaki Yazawa , Ali Shakouri","doi":"10.1016/j.mtphys.2024.101561","DOIUrl":"10.1016/j.mtphys.2024.101561","url":null,"abstract":"<div><div>We demonstrate enhanced Peltier cooling at the nanoscale using geometrical constriction. This nozzle structure leads to electron expansion under an applied bias, which in turn results in additional cooling. This extra cooling enhances the overall Peltier effect when the electrons are out of equilibrium with the lattice. An ensemble Monte Carlo simulation is used to demonstrate the non-equilibrium expansion of an electron gas using nanoscale trapezoidal geometric confinement. The proposed device operates under steady-state conditions, providing enhanced cooling compared to a one-dimensional flat geometry. We observe a five-fold increase in both the maximum cooling temperature and cooling power density, reaching more than 5 kW/cm<sup>2</sup>, when comparing the trapezoidal geometry to the regular flat geometry.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101561"},"PeriodicalIF":10.0,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojun Pan , Jing Li , Zhangsheng Xu , Yue Liu , Wenchao Gao , Rongrong Bao , Caofeng Pan
{"title":"A high stretchability micro-crack tactile sensor system based on strain-isolation substrate","authors":"Xiaojun Pan , Jing Li , Zhangsheng Xu , Yue Liu , Wenchao Gao , Rongrong Bao , Caofeng Pan","doi":"10.1016/j.mtphys.2024.101562","DOIUrl":"10.1016/j.mtphys.2024.101562","url":null,"abstract":"<div><div>The integration of inflexible constituents onto pliable substrates is widely acknowledged as the most pragmatic approach for the realization of stretchable electronics. Nevertheless, the assurance of enduring connectivity between rigid electrode components and these compliant substrates poses a formidable quandary. In the scope of our investigation, we proffer a resolution by conceptualizing a PDMS substrate replete with strain isolation partitions, which can generate Young's modulus difference of approximately 30 times. These partitions efficaciously safeguard the steadfast linkage between rigid components and electrodes, even under diverse strain provocations, a stable connection can be maintained even when able to withstand strain exceeding 120 %. Using this substrate, we constructed a visual deformation sensing system based on microcrack type sensors. Compared with traditional flexible substrates (2 % strain), systems based on strain isolation substrates have better tensile stability (10 % strain). This groundbreaking innovation bestows stretchable micro-crack strain-sensing systems the resilience to contend with the potentially formidable rigors of everyday application.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101562"},"PeriodicalIF":10.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achieving high thermal conductivity and strong bending strength diamond/aluminum composite via nanoscale multi-interface phase structure engineering","authors":"Ping Zhu , Qiang Zhang , Yixiao Xia , Yifu Ma , Huasong Gou , Xue Liang , Gaohui Wu","doi":"10.1016/j.mtphys.2024.101563","DOIUrl":"10.1016/j.mtphys.2024.101563","url":null,"abstract":"<div><div>Diamond/aluminum composites, as a new generation of thermal management materials, are caught in the dilemma between inhibiting the formation of Al<sub>4</sub>C<sub>3</sub> and improving the performance. Herein, we proposed a strategy for nanoscale multi-interface phase structure engineering, utilizing a combination of magnetron sputtering and vacuum heat treatment to obtain diamond particles with nanoscale TiC-Ti layers. Prolonging the vacuum heating time increases the content of TiC, but results in significant differences in the morphology and coverage of TiC formed on the diamond(100) and (111) facets. First-principles calculations reveal that the work of adhesion and C-Ti reaction tendency of diamond(100)/Ti are stronger than those of diamond(111)/Ti, clarifying the difference in interfacial properties between diamond/Ti and diamond/TiC. Diamond-TiC-Ti configuration obtained in advance contributes to fabricating the composite with diamond-TiC-Al(Al<sub>3</sub>Ti) structure, and the multi-interface phase structure is beneficial to improve the interface bonding, adjust the acoustic mismatch, and inhibit the formation of Al<sub>4</sub>C<sub>3</sub>. (800 °C 0.5 h)@Ti-coated diamond(100 μm)/aluminum composite with the multi-interface phase exhibits excellent thermal conductivity(646 W m<sup>−1</sup> K<sup>−1</sup>) and outstanding bending strength(358 MPa), exceeding 90 % of the theoretical prediction of the differential effective medium model. The performance of (800 °C 0.5 h)@Ti-coated diamond/aluminum composite is about 30 % higher than that of traditional Ti-coated diamond/aluminum composite. The TiC layer formed by increasing the heat treatment time is thicker and discontinuous, leading to a decrease in the thermal conductivity of the composite and a weakening effect of Al<sub>4</sub>C<sub>3</sub> inhibition. We clarified the formation mechanism of interface structure related to diamond orientation by multi-scale characterization. Based on the thermal conductivity prediction models, the interface structures corresponding to different diamond orientations were considered, and the predicted values showed good consistency with the experimental results. By interface modification engineering, we overcome the dilemma of introducing modified layer to inhibit Al-C reaction while leading to additional interface thermal resistance, providing insights into the interfacial thermal transport mechanism.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101563"},"PeriodicalIF":10.0,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142369583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Schmidt , Tiago F.T. Cerqueira , Aldo H. Romero , Antoine Loew , Fabian Jäger , Hai-Chen Wang , Silvana Botti , Miguel A.L. Marques
{"title":"Improving machine-learning models in materials science through large datasets","authors":"Jonathan Schmidt , Tiago F.T. Cerqueira , Aldo H. Romero , Antoine Loew , Fabian Jäger , Hai-Chen Wang , Silvana Botti , Miguel A.L. Marques","doi":"10.1016/j.mtphys.2024.101560","DOIUrl":"10.1016/j.mtphys.2024.101560","url":null,"abstract":"<div><div>The accuracy of a machine learning model is limited by the quality and quantity of the data available for its training and validation. This problem is particularly challenging in materials science, where large, high-quality, and consistent datasets are scarce. Here we present <span>alexandria</span>, an open database of more than 5 million density-functional theory calculations for periodic three-, two-, and one-dimensional compounds. We use this data to train machine learning models to reproduce seven different properties using both composition-based models and crystal-graph neural networks. In the majority of cases, the error of the models decreases monotonically with the training data, although some graph networks seem to saturate for large training set sizes. Differences in the training can be correlated with the statistical distribution of the different properties. We also observe that graph-networks, that have access to detailed geometrical information, yield in general more accurate models than simple composition-based methods. Finally, we assess several universal machine learning interatomic potentials. Crystal geometries optimised with these force fields are very high quality, but unfortunately the accuracy of the energies is still lacking. Furthermore, we observe some instabilities for regions of chemical space that are undersampled in the training sets used for these models. This study highlights the potential of large-scale, high-quality datasets to improve machine learning models in materials science.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101560"},"PeriodicalIF":10.0,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bingfei Cao , Jingxin Xia , Jingwen Wang , Junjie Shu , Chao Xie , Yaodong Wu , Zhenfa Zi
{"title":"Inverse and conventional dual magnetocaloric effects in Ni substituted Y-type Sr2Zn2-xNixFe12O22 hexaferrites","authors":"Bingfei Cao , Jingxin Xia , Jingwen Wang , Junjie Shu , Chao Xie , Yaodong Wu , Zhenfa Zi","doi":"10.1016/j.mtphys.2024.101559","DOIUrl":"10.1016/j.mtphys.2024.101559","url":null,"abstract":"<div><div>The effects of Ni substitution on magnetic and magnetocaloric effect (MCE) are investigated in polycrystalline Y-type hexaferrites of Sr<sub>2</sub>Zn<sub>2-<em>x</em></sub>Ni<sub><em>x</em></sub>Fe<sub>12</sub>O<sub>22</sub> (<em>x</em> = 0.0, 0.8, and 2.0). With the increasing of temperature, the <em>M-T</em> curves indicate successive magnetic structure transitions exist in Sr<sub>2</sub>Zn<sub>2-<em>x</em></sub>Ni<sub><em>x</em></sub>Fe<sub>12</sub>O<sub>22</sub> (<em>x</em> = 0.0, 0.8, and 2.0), which play significant roles in MCE behaviors. As the Ni<sup>2+</sup> doping ratio increases, the shape of <span><math><mrow><mo>−</mo><mo>Δ</mo><msub><mi>S</mi><mi>M</mi></msub><mo>−</mo><mi>T</mi></mrow></math></span> curves near room temperature evolves gradually from a table-like to a peak-like form. Particularly, a significant contrast between CMCE and IMCE is observed below 100 K, whose behavior can be inherently exploited for heat sink in magnetic refrigeration applications. Among the samples in this series, Sr<sub>2</sub>Zn<sub>1.2</sub>Ni<sub>0.8</sub>Fe<sub>12</sub>O<sub>22</sub> plays the best CMCE and IMCE performances, with the maximum magnetic entropy change (<span><math><mrow><mo>−</mo><mo>Δ</mo><msubsup><mi>S</mi><mi>M</mi><mi>max</mi></msubsup></mrow></math></span>) values of 0.78 J/kg K at 354 K and −0.56 J/kg K at 16 K for <span><math><mo>Δ</mo><mi>H</mi><mo>=</mo><mn>50</mn><mspace></mspace><mi>k</mi><mi>O</mi><mi>e</mi></math></span> , respectively. Our work demonstrates that Sr<sub>2</sub>Zn<sub>2-<em>x</em></sub>Ni<sub><em>x</em></sub>Fe<sub>12</sub>O<sub>22</sub> hexaferrites have great potential to be tailored for magnetic refrigeration with special needs such as different operating temperature zones, Ericsson cycle or heat sink at refrigeration.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101559"},"PeriodicalIF":10.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yurong Ruan , Tao Feng , Ke Zhong , Bing Wen , Wenqing Zhang
{"title":"Full-shell d-orbitals of interstitial Ni and anomalous electrical transport in Ni-based half-Heusler thermoelectric semiconductors","authors":"Yurong Ruan , Tao Feng , Ke Zhong , Bing Wen , Wenqing Zhang","doi":"10.1016/j.mtphys.2024.101558","DOIUrl":"10.1016/j.mtphys.2024.101558","url":null,"abstract":"<div><div>We systematically investigate the anomalous electronic properties and electrical transport induced by full-shell <em>d</em><sup>10</sup>-orbitals of the extra interstitial Ni<sub><em>i</em></sub> in Ni-based half-Heusler XNi<sub>1+<em>x</em></sub>Z semiconductors. The orbitals from the interstitial Ni<sub><em>i</em></sub> have the unique <em>d</em><sup>10</sup> configuration, split into high-energy <em>e</em><sub><em>g</em></sub><sup>4</sup> orbitals and low-energy <em>t</em><sub><em>2g</em></sub><sup>6</sup> orbitals under the octahedral crystal field. In X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup> (X<sup>IV</sup>=Ti, Zr, Hf; Z<sup>IV</sup>=Sn, Pb), the localized Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states fall within the intrinsic bandgap leading to a reduced bandgap. In X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> (X<sup>III</sup>=Sc, Y; Z<sup>V</sup>=Sb, Bi), the Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states overlap with the intrinsic valence bands. Additionally, the interstitial Ni<sub><em>i</em></sub> perturb the nearest neighbor X atomic coordination, leading to the splitting of degenerate conduction band minimum, which is stronger in X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> than X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup>. Trace amounts of interstitial Ni<sub><em>i</em></sub> significantly impact the electrical transport properties. The introduction of the extra interstitial Ni<sub><em>i</em></sub> reduces the density of states effective mass, the electron group velocity, and the relaxation time, leading to a decrease of the Seebeck coefficient and electrical conductivity at low and medium temperatures. Nevertheless, the introduction of localized Ni<sub><em>i</em></sub>-<em>e</em><sub><em>g</em></sub><sup>4</sup> states within the bandgap as new valence band maximum attenuate the high-temperature bipolar effect at low carrier concentration intervals, thus maintaining a high thermopower at elevated temperatures. Furthermore, the tuning of the Ni<sub><em>i</em></sub>-<em>d</em><sup>10</sup> orbitals by solid solution of both X<sup>IV</sup>Ni<sub>1+<em>x</em></sub>Z<sup>IV</sup> and X<sup>III</sup>Ni<sub>1+<em>x</em></sub>Z<sup>V</sup> is expected to further optimize the electrical transport.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101558"},"PeriodicalIF":10.0,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu-Yan Xu , Hui Zhang , Xiao-Jie Kang , Yong-Zhi Zhang , Cheng-Yu He , Xiang-Hu Gao
{"title":"High-performance, superhydrophobic, durable photonic structure coating for efficient passive daytime radiative cooling","authors":"Xu-Yan Xu , Hui Zhang , Xiao-Jie Kang , Yong-Zhi Zhang , Cheng-Yu He , Xiang-Hu Gao","doi":"10.1016/j.mtphys.2024.101556","DOIUrl":"10.1016/j.mtphys.2024.101556","url":null,"abstract":"<div><div>Passive daytime radiative cooling (PDRC) is an innovative and energy-free cooling technology that automatically cools the surface of an object by reflecting sunlight and emitting heat into outer space without the need for external energy inputs. However, PDRC materials often face issues such as surface contamination and poor long-term outdoor durability. Herein, a photonic structure coating with high PDRC performance, superhydrophobic property, and high outdoor durability was designed and prepared using a phase separation strategy. The photonic structure coating achieves a solar reflectance ∼97.6 % and an average atmospheric window (AW) emissivity of ∼93 %. Under direct sunlight (800 W/m<sup>2</sup>), the coating exhibits good PDRC performance, with an average temperature drop of ∼13 °C and a maximum temperature drop of up to ∼20 °C. The rough and porous surface of the coating can adsorb air, reducing the solid-liquid adhesion and endowing the coating with super-hydrophobic properties. The incorporation of a small amount of fluoroalkyl silanes into the coating provides water resistance, resulting in a water contact angle (WCA) of ∼155.1° and sliding angle (SA) of ∼2.3°, meeting the need for self-cleaning. Furthermore, the coating exhibits superior durability, including resistance to acid and alkali, UV aging, abrasion, and scratching. All these merits render this photonic structure coating great potential for real-world applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101556"},"PeriodicalIF":10.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Qin , Jieqiong Zhang , Jun Liu , Bo Zhao , Chengguo Li , Qian Wan , Cong Jiang , Jiayun Wei , Wei Han , Baoyuan Wang , Lin Lv , Xu Chen , Houzhao Wan , Hao Wang
{"title":"Heterogeneous wafer bonding of ultra-wide bandgap Ga2O3: A review","authors":"Xiao Qin , Jieqiong Zhang , Jun Liu , Bo Zhao , Chengguo Li , Qian Wan , Cong Jiang , Jiayun Wei , Wei Han , Baoyuan Wang , Lin Lv , Xu Chen , Houzhao Wan , Hao Wang","doi":"10.1016/j.mtphys.2024.101557","DOIUrl":"10.1016/j.mtphys.2024.101557","url":null,"abstract":"<div><div>Gallium oxide (Ga<sub>2</sub>O<sub>3</sub>), with its ultra-wide bandgap (∼4.8 eV) and high theoretical breakdown field (8 MV/cm), holds significant research value and promising application in power electronics and microwave radio-frequency (RF) devices. However, the extremely low thermal conductivity of Ga<sub>2</sub>O<sub>3</sub> severely impedes the fabrication of complicated structures and the optimization of device performance. The wafer bonding technology, as a method to fabricate heterogeneous structures materials, newly applied on Ga<sub>2</sub>O<sub>3</sub> to fabricate Ga<sub>2</sub>O<sub>3</sub> hybrid materials. This paper reviews the wafer bonding technology for ultra-wide bandgap Ga<sub>2</sub>O<sub>3</sub> material based on plasma activation and room-temperature surface activation, as well as the heterogeneous integration with silicon (Si), silicon carbide (SiC), and diamond. The effects of various wafer bonding methods on the bonding quality, thermal, and electrical properties are systematically summarized. Finally, the advancements of Ga<sub>2</sub>O<sub>3</sub>-based heterogeneous structures in the applications of power, RF, and optoelectronic devices are summarized. This review aims to address the key challenges in Ga<sub>2</sub>O<sub>3</sub> material through an understanding of principles and development of bonding technology, thereby facilitating the practical application of Ga<sub>2</sub>O<sub>3</sub>-based devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"48 ","pages":"Article 101557"},"PeriodicalIF":10.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142310701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}