Thermal management and phonon transport in BAs/WSe2 heterostructure: First-principles insights for optoelectronic applications

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Guan , Dandan Zhao , Dongyang Li , Lin Zhang
{"title":"Thermal management and phonon transport in BAs/WSe2 heterostructure: First-principles insights for optoelectronic applications","authors":"Yue Guan ,&nbsp;Dandan Zhao ,&nbsp;Dongyang Li ,&nbsp;Lin Zhang","doi":"10.1016/j.mtphys.2025.101843","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the thermal management of van der Waals (vdW) heterostructures is vital for their implementation in optoelectronic applications. In this work, we systematically investigate lattice dynamics related to thermal properties and phonon transport behaviors of a two-dimensional BAs/WSe<sub>2</sub> heterostructure using first-principles calculations combined with phonon and thermal transport analysis. Phonon dispersion spectrum reveals strong anharmonicity and low-frequency optical–acoustic coupling, contributing to significant lattice softening and thermally activated phonon modes. Heat capacity analysis shows a distinct volume-dependent increase and temperature saturation trend, reflecting the full excitation of low-energy phonons at elevated temperatures. The thermal conductivity exhibits a strong temperature dependence, decreasing from 27 W/mK at 100 K to 2.5 W/mK at 1000 K, primarily due to phonon–phonon scattering. The cumulative thermal conductivity confirms that more than 90 % of heat is carried by phonons with mean free path (MFP) &lt; 10 nm. Moreover, low-frequency optical phonons with extended lifetimes and large group velocities, enabled by acoustic–optical coupling, contribute significantly to thermal transport. These findings reveal that the BAs/WSe<sub>2</sub> heterostructure provides both efficient in-plane thermal conduction and localized heat dissipation, making it a promising candidate for thermally stable photodetectors and emitter devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101843"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the thermal management of van der Waals (vdW) heterostructures is vital for their implementation in optoelectronic applications. In this work, we systematically investigate lattice dynamics related to thermal properties and phonon transport behaviors of a two-dimensional BAs/WSe2 heterostructure using first-principles calculations combined with phonon and thermal transport analysis. Phonon dispersion spectrum reveals strong anharmonicity and low-frequency optical–acoustic coupling, contributing to significant lattice softening and thermally activated phonon modes. Heat capacity analysis shows a distinct volume-dependent increase and temperature saturation trend, reflecting the full excitation of low-energy phonons at elevated temperatures. The thermal conductivity exhibits a strong temperature dependence, decreasing from 27 W/mK at 100 K to 2.5 W/mK at 1000 K, primarily due to phonon–phonon scattering. The cumulative thermal conductivity confirms that more than 90 % of heat is carried by phonons with mean free path (MFP) < 10 nm. Moreover, low-frequency optical phonons with extended lifetimes and large group velocities, enabled by acoustic–optical coupling, contribute significantly to thermal transport. These findings reveal that the BAs/WSe2 heterostructure provides both efficient in-plane thermal conduction and localized heat dissipation, making it a promising candidate for thermally stable photodetectors and emitter devices.
BAs/WSe2异质结构中的热管理和声子输运:光电应用的第一性原理见解
了解范德华(vdW)异质结构的热管理对于其在光电应用中的实现至关重要。在这项工作中,我们使用第一性原理计算结合声子和热输运分析,系统地研究了与二维BAs/WSe2异质结构的热性质和声子输运行为相关的晶格动力学。声子色散谱显示出强的非调和性和低频光声耦合,导致显著的晶格软化和热激活声子模式。热容分析显示出明显的体积依赖性增加和温度饱和趋势,反映了低能声子在高温下的充分激发。热导率表现出强烈的温度依赖性,从100 K时的27 W/mK下降到1000 K时的2.5 W/mK,主要是由于声子-声子散射。累积热导率证实了90%以上的热量由平均自由程(MFP)为10 nm的声子携带。此外,通过声光耦合,具有延长寿命和大群速度的低频光学声子对热输运有重要贡献。这些发现表明,BAs/WSe2异质结构提供了高效的面内热传导和局部散热,使其成为热稳定光电探测器和发射器器件的有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信