沸石咪唑盐气体分离框架的最新进展:来自理论、实验和工艺设计的见解

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Shoaib Tahir , Han-Yeol Park , Iqra Kainat , Yun-Jae Han , Minsung Kim , Young-Soo Seo
{"title":"沸石咪唑盐气体分离框架的最新进展:来自理论、实验和工艺设计的见解","authors":"Muhammad Shoaib Tahir ,&nbsp;Han-Yeol Park ,&nbsp;Iqra Kainat ,&nbsp;Yun-Jae Han ,&nbsp;Minsung Kim ,&nbsp;Young-Soo Seo","doi":"10.1016/j.mtphys.2025.101840","DOIUrl":null,"url":null,"abstract":"<div><div>Zeolitic Imidazolate Frameworks (ZIFs) are the structurally versatile class of metal-organic framework materials that have demonstrated strong potential in gas separation, particularly for hydrogen (H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>). This review critically evaluates their intrinsic separation performance by examining how pore topology, aperture size, framework rigidity, and functional group chemistry influence gas transport and selectivity. Both crystalline and amorphous ZIFs are discussed, with recent experimental data and theoretical simulations integrated to uncover the molecular-level mechanisms of diffusion and adsorption. Particular attention is given to the role of framework flexibility, defect formation, and polarity in controlling separation behavior. Challenges related to large-scale membrane fabrication, interfacial compatibility, and long-term stability under realistic operating conditions are thoroughly analyzed. In addition, the emerging role of artificial intelligence is explored for material screening and as a tool for optimizing synthesis protocols and processing workflows. This review links structural design with process scalability to inform future development of ZIF membranes for industrial gas separations.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"57 ","pages":"Article 101840"},"PeriodicalIF":9.7000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in Zeolitic Imidazolate Frameworks for gas separation: Insights from theory, experiment, and process design\",\"authors\":\"Muhammad Shoaib Tahir ,&nbsp;Han-Yeol Park ,&nbsp;Iqra Kainat ,&nbsp;Yun-Jae Han ,&nbsp;Minsung Kim ,&nbsp;Young-Soo Seo\",\"doi\":\"10.1016/j.mtphys.2025.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zeolitic Imidazolate Frameworks (ZIFs) are the structurally versatile class of metal-organic framework materials that have demonstrated strong potential in gas separation, particularly for hydrogen (H<sub>2</sub>) and carbon dioxide (CO<sub>2</sub>). This review critically evaluates their intrinsic separation performance by examining how pore topology, aperture size, framework rigidity, and functional group chemistry influence gas transport and selectivity. Both crystalline and amorphous ZIFs are discussed, with recent experimental data and theoretical simulations integrated to uncover the molecular-level mechanisms of diffusion and adsorption. Particular attention is given to the role of framework flexibility, defect formation, and polarity in controlling separation behavior. Challenges related to large-scale membrane fabrication, interfacial compatibility, and long-term stability under realistic operating conditions are thoroughly analyzed. In addition, the emerging role of artificial intelligence is explored for material screening and as a tool for optimizing synthesis protocols and processing workflows. This review links structural design with process scalability to inform future development of ZIF membranes for industrial gas separations.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"57 \",\"pages\":\"Article 101840\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325001968\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325001968","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

沸石咪唑酸盐框架(ZIFs)是一种结构多样的金属有机框架材料,在气体分离方面具有很强的潜力,特别是在氢气(H2)和二氧化碳(CO2)分离方面。本文通过考察孔隙拓扑结构、孔径大小、框架刚度和官能团化学对气体输运和选择性的影响,批判性地评估了它们的内在分离性能。本文讨论了结晶型和非晶型zif,并结合了最近的实验数据和理论模拟来揭示分子水平的扩散和吸附机制。特别注意框架的灵活性,缺陷形成和极性在控制分离行为中的作用。全面分析了与大规模膜制造、界面相容性和实际操作条件下的长期稳定性有关的挑战。此外,还探讨了人工智能在材料筛选方面的新兴作用,以及作为优化合成方案和处理工作流程的工具。本综述将结构设计与工艺可扩展性联系起来,为工业气体分离ZIF膜的未来发展提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recent progress in Zeolitic Imidazolate Frameworks for gas separation: Insights from theory, experiment, and process design

Recent progress in Zeolitic Imidazolate Frameworks for gas separation: Insights from theory, experiment, and process design
Zeolitic Imidazolate Frameworks (ZIFs) are the structurally versatile class of metal-organic framework materials that have demonstrated strong potential in gas separation, particularly for hydrogen (H2) and carbon dioxide (CO2). This review critically evaluates their intrinsic separation performance by examining how pore topology, aperture size, framework rigidity, and functional group chemistry influence gas transport and selectivity. Both crystalline and amorphous ZIFs are discussed, with recent experimental data and theoretical simulations integrated to uncover the molecular-level mechanisms of diffusion and adsorption. Particular attention is given to the role of framework flexibility, defect formation, and polarity in controlling separation behavior. Challenges related to large-scale membrane fabrication, interfacial compatibility, and long-term stability under realistic operating conditions are thoroughly analyzed. In addition, the emerging role of artificial intelligence is explored for material screening and as a tool for optimizing synthesis protocols and processing workflows. This review links structural design with process scalability to inform future development of ZIF membranes for industrial gas separations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信