Lisanne Demelius, Li Zhang, Anna Maria Coclite and Mark D. Losego
{"title":"ZnO vapor phase infiltration into photo-patternable polyacrylate networks for the microfabrication of hybrid organic–inorganic structures†","authors":"Lisanne Demelius, Li Zhang, Anna Maria Coclite and Mark D. Losego","doi":"10.1039/D4MA00733F","DOIUrl":"https://doi.org/10.1039/D4MA00733F","url":null,"abstract":"<p >Photopatterning of polymers enables the microfabrication of numerous microelectronic, micromechanical, and microchemical systems. The incorporation of inorganics into a patterned polymer material can generate many new interesting properties such as enhanced stability, optical performance, or electrical properties. Vapor phase infiltration (VPI) allows for the creation of hybrid organic–inorganic materials by infiltrating polymers with gaseous metalorganic precursors. This study seeks to explore the potential of integrating VPI with existing photopatterning techniques to achieve top-down hybridization and property modification of polymer structures of different complexity. For this, VPI of diethylzinc (DEZ) is studied for four highly crosslinked acrylate networks that can be patterned by photolithography and two-photon polymerization (2PP): pentaerythritol triacrylate (PETA), pentaerythritol tetraacrylate (PETeA), trimethylolpropane triacrylate (TMPTA) and ethoxylated trimethylolpropane triacrylate (ETPTA). The findings show that for highly crosslinked polymer networks, VPI can be limited by slow precursor diffusion. However, by introducing flexible segments (<em>e.g.</em>, ethoxylated chains), the polymer's free volume can be increased, and infiltration is accelerated, leading to faster infiltration times and higher and more uniform inorganic loading. Finally, selective infiltration of ZnO into photolithographically patterned copolymer networks of TMPTA and ETPTA on non-infiltrating poly(methyl methacrylate) (PMMA) is demonstrated illustrating the potential of VPI for advanced maskless patterning strategies.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00733f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nasim Akhtar, Udyogi N. K. Conthagamage, Sara P. Bucher, Zuliah A. Abdulsalam, Macallister L. Davis, William N. Beavers and Víctor García-López
{"title":"Thiourea-based rotaxanes: anion transport across synthetic lipid bilayers and antibacterial activity against Staphylococcus aureus†","authors":"Nasim Akhtar, Udyogi N. K. Conthagamage, Sara P. Bucher, Zuliah A. Abdulsalam, Macallister L. Davis, William N. Beavers and Víctor García-López","doi":"10.1039/D4MA00794H","DOIUrl":"10.1039/D4MA00794H","url":null,"abstract":"<p >We report the synthesis of two rotaxanes (<strong>1</strong> and <strong>2</strong>) whose rings have appended thiourea units for the selective recognition of Cl<small><sup>−</sup></small> anions. Rotaxane <strong>1</strong> transports Cl<small><sup>−</sup></small> across synthetic lipid bilayers more efficiently than <strong>2</strong>, exhibiting EC<small><sub>50</sub></small> values of 0.243 mol% <em>versus</em> 0.736 mol%, respectively. A control rotaxane (<strong>3</strong>) without the thiourea units and the individual axle (<strong>4</strong>) also showed Cl<small><sup>−</sup></small> transport, although with much lower efficiency (EC<small><sub>50</sub></small> values of 4.044 mol% and 4.986 mol%). The unthreaded ring (<strong>5</strong>) showed the lowest transport activity. This trend highlights the advantage of the interlocked system with a ring containing thiourea units. We also investigated how the membrane composition of liposomes influences the transport activity of <strong>1</strong> and <strong>2</strong>, observing higher Cl<small><sup>−</sup></small> transport in membranes with higher fluidity. Additionally, we demonstrated that rotaxane <strong>1</strong> can kill drug-resistant and osmotolerant <em>Staphylococcus aureus</em> when used in combination with NaCl or arachidonic acid. The latter is known to increase the fluidity of the membrane in <em>S. aureus</em>, highlighting cooperative behavior. This work provides new insights into how various structural features and the membrane environment influence the anion transport activity of rotaxanes, offering important design principles for optimizing future rotaxanes for biomedical and other applications.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marco Amores, Peter J. Baker, Edmund J. Cussen and Serena A. Cussen
{"title":"The effect of aliovalent dopants on the structural and transport properties of Li6La2BaTa2O12 garnet Li-ion solid electrolytes†","authors":"Marco Amores, Peter J. Baker, Edmund J. Cussen and Serena A. Cussen","doi":"10.1039/D4MA00679H","DOIUrl":"https://doi.org/10.1039/D4MA00679H","url":null,"abstract":"<p >Li-rich garnet solid electrolytes are promising candidates for all-solid-state batteries, allowing for increased energy densities, compatibility with Li-metal anodes and improved safety by replacing flammable organic-based liquid electrolytes. Li-stuffed garnets typically require aliovalent doping to stabilise the highly ionic conductive <em>Ia</em><img><em>d</em> cubic phase. The role of dopants and their location within the garnet framework can greatly affect the conduction properties of these garnets, yet their impact on the structure and resulting ion transport is not fully understood. Here, we evaluate the effect of aliovalent doping with Al<small><sup>3+</sup></small>, Ga<small><sup>3+</sup></small> and Zn<small><sup>2+</sup></small> in the Li<small><sub>6</sub></small>BaLa<small><sub>2</sub></small>Ta<small><sub>2</sub></small>O<small><sub>12</sub></small> (LBLTO) garnet material. A combination of PXRD and XAS reveals a linear cell parameter contraction with an increase in doping and the preference of the 24d Li<small><sup>+</sup></small> sites for Al<small><sup>3+</sup></small> and Zn<small><sup>2+</sup></small> dopants, with Ga<small><sup>3+</sup></small> occupying both the 24d and 48g Li<small><sup>+</sup></small> sites. Macroscopic ionic conductivity analyses by EIS demonstrate an enhancement of the transport properties where addition of small amounts of Al<small><sup>3+</sup></small> decreases the activation energy to Li<small><sup>+</sup></small> diffusion to 0.35(4) eV. A detrimental effect on ionic conductivities is observed when dopants were introduced in Li<small><sup>+</sup></small> pathways and upon decreasing the Li<small><sup>+</sup></small> concentration. Insights into this behaviour are gleaned from microscopic diffusion studies by muon spin relaxation (μ<small><sup>+</sup></small>SR) spectroscopy, which reveals a low activation energy barrier for Li<small><sup>+</sup></small> diffusion of 0.16(1) eV and a diffusion coefficient comparable to those of Li<small><sub>7</sub></small>La<small><sub>3</sub></small>Zr<small><sub>2</sub></small>O<small><sub>12</sub></small> (LLZO) benchmark garnet materials.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00679h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyu He, Xinyi Huang, Shuai He, Wei Zhang, Xinhua Li, Yong You and Fang Zuo
{"title":"Fast preparation of adhesive, anti-freezing hydrogels with strain- and magnetic-responsive conductivities†","authors":"Xinyu He, Xinyi Huang, Shuai He, Wei Zhang, Xinhua Li, Yong You and Fang Zuo","doi":"10.1039/D4MA00642A","DOIUrl":"https://doi.org/10.1039/D4MA00642A","url":null,"abstract":"<p >Incorporation of magnetic components enables flexible conductive hydrogels to exhibit strain-response properties in the presence of a magnetic field. However, the utilization of flexible conductive hydrogels is constrained under low-temperature conditions, and the mechanical properties of most magnetic hydrogels are poor. In this work, a conductive sensor was developed through Ca<small><sup>2+</sup></small>-initiated radical polymerization, utilizing the synergistic effects of sodium lignosulfonate (SL), calcium chloride (CaCl<small><sub>2</sub></small>), and Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@laponites (XLG). Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG not only served as a physical crosslinking agent but also functioned as a magnetic component. Due to the presence of both physical and chemical crosslinking, the Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/polyacrylamide (PAM) hydrogel had good mechanical properties. After being placed at −20 °C for 24 h, the Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/PAM hydrogel remained intact, soft, and tough, and it still exhibited good stretchability (1029%) and strength (69.7 kPa). In addition, the hydrogel also exhibited good adhesion with various substrates. Strain sensors assembled from the nanocomposite hydrogels achieved a gauge factor of 5.14, a response time of 166 ms, and good stability. The Ca<small><sup>2+</sup></small>-Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@XLG/SL/PAM hydrogels had magnetic response properties, and they could respond quickly to magnetic field changes in the form of resistance changes. Thus, they have potential applications in magnetic field signal monitoring and soft actuators.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00642a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Basree, Waris, Arif Ali, Nishat Khan, Mohammad Zain Khan, Ganesh Chandra Nayak, Kafeel Ahmad Siddiqui and Musheer Ahmad
{"title":"A dual functional Cu(ii)-coordination polymer and its rGO composite for selective solvent detection and high performance energy storage†","authors":"Basree, Waris, Arif Ali, Nishat Khan, Mohammad Zain Khan, Ganesh Chandra Nayak, Kafeel Ahmad Siddiqui and Musheer Ahmad","doi":"10.1039/D4MA00762J","DOIUrl":"https://doi.org/10.1039/D4MA00762J","url":null,"abstract":"<p >Herein, the fabrication of a new Cu(<small>II</small>)-based coordination polymer {[Cu<small><sub>2</sub></small>(DPP)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>]·DPP·2NO<small><sub>3</sub></small>}<small><sub><em>n</em></sub></small> (<strong>CP-1</strong>) (DPP = 1,3-di(4-pyridyl)propane) and its composite (<strong>rGO@CP-1</strong>) has been done using solvothermal and mechanochemical methods. The crystal structure of the synthesized <strong>CP-1</strong> was confirmed utilizing single-crystal X-ray diffraction (SC-XRD). Furthermore, the structural features of the as-synthesized <strong>CP-1</strong> and <strong>rGO@CP-1</strong> were examined using PXRD, FTIR, TGA, SEM, and HR-TEM analysis. The topological framework of <strong>CP-1</strong> shows a <strong><em>1,3M4-1</em></strong> underlying net for two fragments and the hydrogen-bonded network shows a <strong><em>2C1</em></strong> underlying net topology. The fluorescence detection of transition metal ions and solvents using <strong>CP-1</strong> showed promising results of 97.4% DMF and 96.8% Zn<small><sup>2+</sup></small>. Electrochemical study of <strong>CP-1</strong> and <strong>rGO@CP-1</strong> was performed in an acidic medium (1 M H<small><sub>2</sub></small>SO<small><sub>4</sub></small>) electrolyte utilizing cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques with a specific capacity of 244.17 F g<small><sup>−1</sup></small> and 899.54 F g<small><sup>−1</sup></small> for <strong>CP-1</strong> and <strong>rGO@CP-1</strong>, respectively at 1 A g<small><sup>−1</sup></small> (current density). Moreover, 98.6% columbic efficiency with 94.62% capacity retention of <strong>rGO@CP-1</strong> was obtained at 8 A g<small><sup>−1</sup></small> up to 2000 cycles.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00762j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaming Mu, Leran Mao, Gavin P. Andrews and Sheiliza Carmali
{"title":"Re-engineering lysozyme solubility and activity through surfactant complexation†","authors":"Jiaming Mu, Leran Mao, Gavin P. Andrews and Sheiliza Carmali","doi":"10.1039/D4MA00720D","DOIUrl":"https://doi.org/10.1039/D4MA00720D","url":null,"abstract":"<p >Hydrophobic ion-pairing is an established solubility engineering technique that uses amphiphilic surfactants to modulate drug lipophilicity and facilitate encapsulation in polymeric and lipid-based drug delivery systems. For proteins, surfactant complexation can also lead to unfolding processes and loss in bioactivity. In this study, we investigated the impact of two surfactants, sodium dodecyl sulphate (SDS) and dioctyl sulfosuccinate (DOSS) on lysozyme's solubility, activity, and structure. SDS and DOSS were combined with lysozyme at increasing charge ratios (4 : 1, 2 : 1, 1 : 1, 1 : 2 and 1 : 4) <em>via</em> hydrophobic ion pairing at pH 4.5. Maximum complexation efficiency at the 1 : 1 charge ratio was confirmed by protein quantitation assays and zeta potential measurements, showing a near neutral surface charge. Lysozyme lipophilicity was successfully increased, with log <em>D n</em>-octanol/PBS values up to 2.5 with SDS and 1.8 with DOSS. Bioactivity assays assessing lysis of <em>M. lysodeikticus</em> cell walls showed up to a 2-fold increase in lysozyme's catalytic ability upon complexation with SDS at ratios less than stoichiometric, suggesting favourable mechanisms of stabilisation. Secondary structural analysis using Fourier-transform infrared spectroscopy indicated that lysozyme underwent a partial unfolding process upon complexation with low SDS concentrations. Molecular dynamic simulations further confirmed that at these low concentrations, a positive conformation was obtained with the active site residue Glu 35 more solvent-exposed. Combined, this suggested that sub-stoichiometric SDS altered the active site's secondary structure through increased backbone flexibility, leading to higher substrate accessibility. For DOSS, low surfactant concentrations retained lysozyme's native function and structure while still increasing the protein's lipophilic character. Our research findings demonstrate that modulation of protein activity can be related to surfactant chemistry and that controlled ion-pairing can lead to re-engineering of lysozyme solubility, activity, and structure. This has significant implications for advanced protein applications in healthcare, particularly towards the development of formulation strategies for oral biotherapeutics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00720d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuxuan Zhang, Fei Qin, Jinwook Baek, Dong Hun Lee, Minyoung Kim, Han-Wook Song and Sunghwan Lee
{"title":"From non-aqueous liquid to solid-state Li–S batteries: design protocols, challenges and solutions","authors":"Yuxuan Zhang, Fei Qin, Jinwook Baek, Dong Hun Lee, Minyoung Kim, Han-Wook Song and Sunghwan Lee","doi":"10.1039/D4MA00666F","DOIUrl":"https://doi.org/10.1039/D4MA00666F","url":null,"abstract":"<p >Traditional Lithium-ion batteries may not satisfy the requirements of advanced batteries, demanding higher energy and power density, broader operating temperature ranges, and faster charging speeds. Solid-state Li–S batteries (SSLSBs) offer significant advantages, including higher theoretical specific capacity, cost-effectiveness, and environmental benefits. This mini-review exclusively introduces design protocols with emphasis on key governing parameters of SSLSBs towards achieving a specific energy of more than 500 W h kg<small><sup>−1</sup></small>. In addition, the distinct fading mechanisms of SSLSBs compared to non-aqueous electrolyte systems and other ASSB systems are summarized and compared. Then, we outline the state-of-the-art strategies to enhance the electrochemical performance of SSLSBs and suggest insightful directions for future research. This review may be of significance to the design of advanced SSLSBs, by mitigating technical challenges, and hence facilitating their practical implementation in energy storage technologies.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00666f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hadar Shaked, Daniela Dobrynin, Iryna Polishchuk, Alexander Katsman and Boaz Pokroy
{"title":"Bio-inspired 3D printing of layered structures utilizing stabilized amorphous calcium carbonate within biodegradable matrices†","authors":"Hadar Shaked, Daniela Dobrynin, Iryna Polishchuk, Alexander Katsman and Boaz Pokroy","doi":"10.1039/D4MA00580E","DOIUrl":"https://doi.org/10.1039/D4MA00580E","url":null,"abstract":"<p >Many composites in nature are formed in the course of biomineralization. These biocomposites are often produced <em>via</em> an amorphous precursor such as amorphous calcium carbonate (ACC), demonstrating a layered structure. In the current study, robocasting, a 3D-printing technique, was used to print layered structures inspired by the mineralized tissues of <em>Ophiomastix wendtii</em> and <em>Odontodactylus scyllarus</em>, which exhibit a layered organization. Various biodegradable organic matrices with a high percentage (>94%) of ACC reinforcements were compared, and their mechanical properties were studied. With the organic matrix protection, ACC was stabilized for long periods, exceeding even three years, when stored at ambient conditions. The layered structures were printed and fractured using the three-point bending method to evaluate their strength. The fracture interface was examined to weigh the benefits an amorphous precursor may offer in the 3D printing processes of ceramic materials. The fracture interface presented bulk behavior with no distinct layering, resembling the formation of mineral single crystalline tissue in nature and overcoming one of the most critical challenges in 3D printing, namely the inter-layer interfaces. Herein, a bio-inspired, low-temperature route to form layered structures is presented. By fusing the layers together following low-temperature sintering, a composite structure composed of stabilized ACC integrated with biodegradable, environmentally friendly matrices can be obtained.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00580e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Conte, Antonella Rosati, Marco Fantin, Alessandro Aliprandi, Marco Baron, Sara Bonacchi and Sabrina Antonello
{"title":"Advanced morphological control over Cu nanowires through a design of experiments approach†","authors":"Andrea Conte, Antonella Rosati, Marco Fantin, Alessandro Aliprandi, Marco Baron, Sara Bonacchi and Sabrina Antonello","doi":"10.1039/D4MA00402G","DOIUrl":"10.1039/D4MA00402G","url":null,"abstract":"<p >Copper nanowires (CuNWs), featuring anisotropic highly conductive crystalline facets, represent an ideal nanostructure to fabricate on-demand materials as transparent electrodes and efficient electrocatalysts. The development of reliable and robust CuNWs requires achieving a full control over their synthesis and morphology growth, a challenge that continues to puzzle materials scientists. In this study, we systematically investigated the correlation between the critical synthetic parameters and the structural properties of nanowires using a design of experiments (DOE) approach. Multiparametric variation of experimental reaction conditions combined with orthogonal technical analysis allowed us to develop a sound predictive model that provides guidelines for designing CuNWs with controlled morphology and reaction yield. Beyond these synthetic achievements, voltammetric and electrocatalytic experiments were used to correlate the CuNWs morphology and structure to their catalytic activity and selectivity toward CO<small><sub>2</sub></small> electroreduction, thus opening new avenues for further intersectoral actions.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142469169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Violeta Koleva, Trajche Tushev, Sonya Harizanova, Rositsa Kukeva, Maria Shipochka, Pavel Markov and Radostina Stoyanova
{"title":"Multi-electron redox reactions with iron and vanadium ions at a mixed phosphate–sulfate electrode during sodium intercalation†","authors":"Violeta Koleva, Trajche Tushev, Sonya Harizanova, Rositsa Kukeva, Maria Shipochka, Pavel Markov and Radostina Stoyanova","doi":"10.1039/D4MA00754A","DOIUrl":"https://doi.org/10.1039/D4MA00754A","url":null,"abstract":"<p >In order to improve the specific capacity of intercalation electrodes for sodium-ion batteries, it is necessary to identify materials capable of storing Na<small><sup>+</sup></small> ions by activating multi-electron redox reactions. Herein, we report a NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> compound as a multi-electron electrode that combines the most abundant Fe and V ions, having multiple oxidation states, with a stable mixed phosphate–sulfate matrix. Na<small><sub><em>x</em></sub></small>FeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> reversibly intercalates a total of 3 moles of Na<small><sup>+</sup></small> ions (corresponding to a specific capacity of 175 mA h g<small><sup>−1</sup></small>) within a potential range of 1.5–4.2 V, which is concomitant with a limited variation in the lattice volume (up to 5.2%). NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> interacts with rGO, resulting in rGO covering the phosphate–sulphate particles, and the thickness of the covering varies between 5 and 10 nm. The NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite stores Na<small><sup>+</sup></small> ions <em>via</em> a hybrid mechanism involving faradaic and capacitive reactions. In sodium half-cells, the NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO composite displays high capacity (about 90 mA h g<small><sup>−1</sup></small>), and it exhibits an excellent long-term cycling stability at elevated temperatures (about 96–97% after 100 cycles at 20 °C, followed by the next 100 cycles at 40 °C). The improved electrochemical performance is discussed based on the structural robustness of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small> and the surface interaction of NaFeVPO<small><sub>4</sub></small>(SO<small><sub>4</sub></small>)<small><sub>2</sub></small>/rGO with an electrolyte salt and electrolyte solvent. The information from this study will be relevant to the design of high energy polyanionic electrodes for practical application in sodium-ion batteries.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00754a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}