Synthesis of gold nanoparticles using Eutrema japonicum (Wasabi): antioxidant and anti-inflammatory studies†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Christian Nanga Chick, Mahiro Takano, Francois Eya'ane Meva and Toyonobu Usuki
{"title":"Synthesis of gold nanoparticles using Eutrema japonicum (Wasabi): antioxidant and anti-inflammatory studies†","authors":"Christian Nanga Chick, Mahiro Takano, Francois Eya'ane Meva and Toyonobu Usuki","doi":"10.1039/D5MA00065C","DOIUrl":null,"url":null,"abstract":"<p >In this study, gold nanoparticles with <em>Eutrema japonicum</em> (AuNPs-E.j.) were synthesized using the butylene glycol extract of the plant's grated stem and Au(<small>III</small>) chloride trihydrate solution. The primary characterization of synthesized AuNPs-E.j. using a UV-Vis spectrometer indicated the presence of a surface plasmon resonance band between 500 and 600 nm, indicating the reduction of Au(<small>III</small>) to Au(0). Infrared spectroscopy revealed the existence of C–O, OH, C–H, C<img>O, and C–C vibrations or stretching along with aliphatic hydrocarbon chains of as-synthesized AuNP-E.j. Dynamic light scattering indicated an average particle size of 35.94 nm and a zeta potential value of 3.53 mV. AuNPs-E.j. reduced 1,1-diphenyl-2-picryhydrazyl and phosphomolybdenum radicals, with ascorbic acid equivalent antioxidant capacity of 1.08 and 24.63 mg/100 mL, respectively. In addition, the albumin denaturation inhibitory activity of AuNPs-E.j. was equivalent to a percentage inhibition value of the standard drug (diclofenac) value (0.36 mg/100 mL). This study confirmed that AuNPs-E.j. have the potential as a therapeutic agent for treating oxidative stress, inflammatory problems and related diseases.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2365-2370"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00065c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00065c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, gold nanoparticles with Eutrema japonicum (AuNPs-E.j.) were synthesized using the butylene glycol extract of the plant's grated stem and Au(III) chloride trihydrate solution. The primary characterization of synthesized AuNPs-E.j. using a UV-Vis spectrometer indicated the presence of a surface plasmon resonance band between 500 and 600 nm, indicating the reduction of Au(III) to Au(0). Infrared spectroscopy revealed the existence of C–O, OH, C–H, CO, and C–C vibrations or stretching along with aliphatic hydrocarbon chains of as-synthesized AuNP-E.j. Dynamic light scattering indicated an average particle size of 35.94 nm and a zeta potential value of 3.53 mV. AuNPs-E.j. reduced 1,1-diphenyl-2-picryhydrazyl and phosphomolybdenum radicals, with ascorbic acid equivalent antioxidant capacity of 1.08 and 24.63 mg/100 mL, respectively. In addition, the albumin denaturation inhibitory activity of AuNPs-E.j. was equivalent to a percentage inhibition value of the standard drug (diclofenac) value (0.36 mg/100 mL). This study confirmed that AuNPs-E.j. have the potential as a therapeutic agent for treating oxidative stress, inflammatory problems and related diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信