Mohammad Saquib, Shilpa Shetty, S. G. Siddanth, Nagaraja Nayak, Chandra Sekhar Rout, Ramakrishna Nayak, Ahipa T. N. and M. Selvakumar
{"title":"基于响应面法优化的基于mof衍生Co3O4/rGO纳米复合材料的柔性微超级电容器,用于增强能量存储†","authors":"Mohammad Saquib, Shilpa Shetty, S. G. Siddanth, Nagaraja Nayak, Chandra Sekhar Rout, Ramakrishna Nayak, Ahipa T. N. and M. Selvakumar","doi":"10.1039/D4MA01126K","DOIUrl":null,"url":null,"abstract":"<p >A promising microsupercapacitor design was achieved by printing conductive ink composed of porous Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles derived from ZIF-67 with <em>in situ</em> reduced graphene oxide (rGO) growth <em>via</em> thermal reduction. The symmetric micro-supercapacitor achieved an areal capacitance of 939 mF cm<small><sup>−2</sup></small>, an energy density of 130.4 μW h cm<small><sup>−2</sup></small>, and a power density of 2134 mW cm<small><sup>−2</sup></small>, optimized <em>via</em> response surface methodology (RSM), with peak performance at 550 °C and a composite desirability of 86.48%. Additionally, it demonstrated exceptional cyclic stability, retaining 91.7% of its initial capacitance after 10 000 cycles of charge and discharge. The asymmetric device demonstrated even higher performance, with an areal capacitance of 1220.2 mF cm<small><sup>−2</sup></small>, an energy density of 343.51 μW h cm<small><sup>−2</sup></small>, and a power density of 3876.6 mW cm<small><sup>−2</sup></small>, Similarly, the Co<small><sub>3</sub></small>O<small><sub>4</sub></small>/rGO-550 microsupercapacitor demonstrated 94.6% cycling stability even after 10 000 charge–discharge cycles, highlighting its durability and long-term performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2211-2230"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01126k?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineered flexible microsupercapacitors with MOF-derived Co3O4/rGO nanocomposite optimized via response surface methodology for enhanced energy storage†\",\"authors\":\"Mohammad Saquib, Shilpa Shetty, S. G. Siddanth, Nagaraja Nayak, Chandra Sekhar Rout, Ramakrishna Nayak, Ahipa T. N. and M. Selvakumar\",\"doi\":\"10.1039/D4MA01126K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A promising microsupercapacitor design was achieved by printing conductive ink composed of porous Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles derived from ZIF-67 with <em>in situ</em> reduced graphene oxide (rGO) growth <em>via</em> thermal reduction. The symmetric micro-supercapacitor achieved an areal capacitance of 939 mF cm<small><sup>−2</sup></small>, an energy density of 130.4 μW h cm<small><sup>−2</sup></small>, and a power density of 2134 mW cm<small><sup>−2</sup></small>, optimized <em>via</em> response surface methodology (RSM), with peak performance at 550 °C and a composite desirability of 86.48%. Additionally, it demonstrated exceptional cyclic stability, retaining 91.7% of its initial capacitance after 10 000 cycles of charge and discharge. The asymmetric device demonstrated even higher performance, with an areal capacitance of 1220.2 mF cm<small><sup>−2</sup></small>, an energy density of 343.51 μW h cm<small><sup>−2</sup></small>, and a power density of 3876.6 mW cm<small><sup>−2</sup></small>, Similarly, the Co<small><sub>3</sub></small>O<small><sub>4</sub></small>/rGO-550 microsupercapacitor demonstrated 94.6% cycling stability even after 10 000 charge–discharge cycles, highlighting its durability and long-term performance.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 7\",\"pages\":\" 2211-2230\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01126k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01126k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01126k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过热还原原位还原氧化石墨烯(rGO)生长,打印由ZIF-67衍生的多孔Co3O4纳米颗粒组成的导电油墨,实现了一种很有前途的微超级电容器设计。该对称型微型超级电容器的面电容为939 mF cm−2,能量密度为130.4 μW h cm−2,功率密度为2134 mW cm−2,通过响应面法(RSM)优化,在550°C时达到峰值性能,复合性能为86.48%。此外,它还表现出优异的循环稳定性,在10,000次充放电循环后保持了91.7%的初始电容。该器件的面电容为1220.2 mF cm - 2,能量密度为343.51 μW h cm - 2,功率密度为3876.6 mW cm - 2。同样,Co3O4/rGO-550微型超级电容器在10000次充放电循环后仍具有94.6%的循环稳定性,突出了其耐用性和长期性能。
Engineered flexible microsupercapacitors with MOF-derived Co3O4/rGO nanocomposite optimized via response surface methodology for enhanced energy storage†
A promising microsupercapacitor design was achieved by printing conductive ink composed of porous Co3O4 nanoparticles derived from ZIF-67 with in situ reduced graphene oxide (rGO) growth via thermal reduction. The symmetric micro-supercapacitor achieved an areal capacitance of 939 mF cm−2, an energy density of 130.4 μW h cm−2, and a power density of 2134 mW cm−2, optimized via response surface methodology (RSM), with peak performance at 550 °C and a composite desirability of 86.48%. Additionally, it demonstrated exceptional cyclic stability, retaining 91.7% of its initial capacitance after 10 000 cycles of charge and discharge. The asymmetric device demonstrated even higher performance, with an areal capacitance of 1220.2 mF cm−2, an energy density of 343.51 μW h cm−2, and a power density of 3876.6 mW cm−2, Similarly, the Co3O4/rGO-550 microsupercapacitor demonstrated 94.6% cycling stability even after 10 000 charge–discharge cycles, highlighting its durability and long-term performance.