Engineered flexible microsupercapacitors with MOF-derived Co3O4/rGO nanocomposite optimized via response surface methodology for enhanced energy storage†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammad Saquib, Shilpa Shetty, S. G. Siddanth, Nagaraja Nayak, Chandra Sekhar Rout, Ramakrishna Nayak, Ahipa T. N. and M. Selvakumar
{"title":"Engineered flexible microsupercapacitors with MOF-derived Co3O4/rGO nanocomposite optimized via response surface methodology for enhanced energy storage†","authors":"Mohammad Saquib, Shilpa Shetty, S. G. Siddanth, Nagaraja Nayak, Chandra Sekhar Rout, Ramakrishna Nayak, Ahipa T. N. and M. Selvakumar","doi":"10.1039/D4MA01126K","DOIUrl":null,"url":null,"abstract":"<p >A promising microsupercapacitor design was achieved by printing conductive ink composed of porous Co<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles derived from ZIF-67 with <em>in situ</em> reduced graphene oxide (rGO) growth <em>via</em> thermal reduction. The symmetric micro-supercapacitor achieved an areal capacitance of 939 mF cm<small><sup>−2</sup></small>, an energy density of 130.4 μW h cm<small><sup>−2</sup></small>, and a power density of 2134 mW cm<small><sup>−2</sup></small>, optimized <em>via</em> response surface methodology (RSM), with peak performance at 550 °C and a composite desirability of 86.48%. Additionally, it demonstrated exceptional cyclic stability, retaining 91.7% of its initial capacitance after 10 000 cycles of charge and discharge. The asymmetric device demonstrated even higher performance, with an areal capacitance of 1220.2 mF cm<small><sup>−2</sup></small>, an energy density of 343.51 μW h cm<small><sup>−2</sup></small>, and a power density of 3876.6 mW cm<small><sup>−2</sup></small>, Similarly, the Co<small><sub>3</sub></small>O<small><sub>4</sub></small>/rGO-550 microsupercapacitor demonstrated 94.6% cycling stability even after 10 000 charge–discharge cycles, highlighting its durability and long-term performance.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 7","pages":" 2211-2230"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma01126k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma01126k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A promising microsupercapacitor design was achieved by printing conductive ink composed of porous Co3O4 nanoparticles derived from ZIF-67 with in situ reduced graphene oxide (rGO) growth via thermal reduction. The symmetric micro-supercapacitor achieved an areal capacitance of 939 mF cm−2, an energy density of 130.4 μW h cm−2, and a power density of 2134 mW cm−2, optimized via response surface methodology (RSM), with peak performance at 550 °C and a composite desirability of 86.48%. Additionally, it demonstrated exceptional cyclic stability, retaining 91.7% of its initial capacitance after 10 000 cycles of charge and discharge. The asymmetric device demonstrated even higher performance, with an areal capacitance of 1220.2 mF cm−2, an energy density of 343.51 μW h cm−2, and a power density of 3876.6 mW cm−2, Similarly, the Co3O4/rGO-550 microsupercapacitor demonstrated 94.6% cycling stability even after 10 000 charge–discharge cycles, highlighting its durability and long-term performance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信