GeobiologyPub Date : 2023-03-27DOI: 10.1111/gbi.12555
Caroline C. Mather, Heta M. Lampinen, Maurice Tucker, Matthias Leopold, Shawan Dogramaci, Mark Raven, Robert J. Gilkes
{"title":"Microbial influence on dolomite and authigenic clay mineralisation in dolocrete profiles of NW Australia","authors":"Caroline C. Mather, Heta M. Lampinen, Maurice Tucker, Matthias Leopold, Shawan Dogramaci, Mark Raven, Robert J. Gilkes","doi":"10.1111/gbi.12555","DOIUrl":"https://doi.org/10.1111/gbi.12555","url":null,"abstract":"<p>Dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>) precipitation is kinetically inhibited at surface temperatures and pressures. Experimental studies have demonstrated that microbial extracellular polymeric substances (EPS) as well as certain clay minerals may catalyse dolomite precipitation. However, the combined association of EPS with clay minerals and dolomite and their occurrence in the natural environment are not well documented. We investigated the mineral and textural associations within groundwater dolocrete profiles from arid northwest Australia. Microbial EPS is a site of nucleation for both dolomite and authigenic clay minerals in this Late Miocene to Pliocene dolocrete. Dolomite crystals are commonly encased in EPS alveolar structures, which have been mineralised by various clay minerals, including montmorillonite, trioctahedral smectite and palygorskite-sepiolite. Observations of microbial microstructures and their association with minerals resemble textures documented in various lacustrine and marine microbialites, indicating that similar mineralisation processes may have occurred to form these dolocretes. EPS may attract and bind cations that concentrate to form the initial particles for mineral nucleation. The dolomite developed as nanocrystals, likely via a disordered precursor, which coalesced to form larger micritic crystal aggregates and rhombic crystals. Spheroidal dolomite textures, commonly with hollow cores, are also present and may reflect the mineralisation of a biofilm surrounding coccoid bacterial cells. Dolomite formation within an Mg-clay matrix is also observed, more commonly within a shallow pedogenic horizon. The ability of the negatively charged surfaces of clay and EPS to bind and dewater Mg<sup>2+</sup>, as well as the slow diffusion of ions through a viscous clay or EPS matrix, may promote the incorporation of Mg<sup>2+</sup> into the mineral and overcome the kinetic effects to allow disordered dolomite nucleation and its later growth. The results of this study show that the precipitation of clay and carbonate minerals in alkaline environments may be closely associated and can develop from the same initial amorphous Ca–Mg–Si-rich matrix within EPS. The abundance of EPS preserved within the profiles is evidence of past microbial activity. Local fluctuations in chemistry, such as small increases in alkalinity, associated with the degradation of EPS or microbial activity, were likely important for both clay and dolomite formation. Groundwater environments may be important and hitherto understudied settings for microbially influenced mineralisation and for low-temperature dolomite precipitation.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 5","pages":"644-670"},"PeriodicalIF":3.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12555","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5836510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-03-24DOI: 10.1111/gbi.12554
Yasuto Watanabe, Eiichi Tajika, Kazumi Ozaki
{"title":"Biogeochemical transformations after the emergence of oxygenic photosynthesis and conditions for the first rise of atmospheric oxygen","authors":"Yasuto Watanabe, Eiichi Tajika, Kazumi Ozaki","doi":"10.1111/gbi.12554","DOIUrl":"https://doi.org/10.1111/gbi.12554","url":null,"abstract":"<p>The advent of oxygenic photosynthesis represents the most prominent biological innovation in the evolutionary history of the Earth. The exact timing of the evolution of oxygenic photoautotrophic bacteria remains elusive, yet these bacteria profoundly altered the redox state of the ocean–atmosphere–biosphere system, ultimately causing the first major rise in atmospheric oxygen (O<sub>2</sub>)—the so-called Great Oxidation Event (GOE)—during the Paleoproterozoic (~2.5–2.2 Ga). However, it remains unclear how the coupled atmosphere–marine biosphere system behaved after the emergence of oxygenic photoautotrophs (OP), affected global biogeochemical cycles, and led to the GOE. Here, we employ a coupled atmospheric photochemistry and marine microbial ecosystem model to comprehensively explore the intimate links between the atmosphere and marine biosphere driven by the expansion of OP, and the biogeochemical conditions of the GOE. When the primary productivity of OP sufficiently increases in the ocean, OP suppresses the activity of the anaerobic microbial ecosystem by reducing the availability of electron donors (H<sub>2</sub> and CO) in the biosphere and causes climate cooling by reducing the level of atmospheric methane (CH<sub>4</sub>). This can be attributed to the supply of OH radicals from biogenic O<sub>2</sub>, which is a primary sink of biogenic CH<sub>4</sub> and electron donors in the atmosphere. Our typical result also demonstrates that the GOE is triggered when the net primary production of OP exceeds >~5% of the present oceanic value. A globally frozen snowball Earth event could be triggered if the atmospheric CO<sub>2</sub> level was sufficiently small (<~40 present atmospheric level; PAL) because the concentration of CH<sub>4</sub> in the atmosphere would decrease faster than the climate mitigation by the carbonate–silicate geochemical cycle. These results support a prolonged anoxic atmosphere after the emergence of OP during the Archean and the occurrence of the GOE and snowball Earth event during the Paleoproterozoic.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 5","pages":"537-555"},"PeriodicalIF":3.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5782382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-27DOI: 10.1111/gbi.12553
Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post
{"title":"Mineralogical characterization of biosilicas versus geological analogs","authors":"Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post","doi":"10.1111/gbi.12553","DOIUrl":"https://doi.org/10.1111/gbi.12553","url":null,"abstract":"<p>Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-A<sub>N</sub> are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO<sub>2</sub> network modes (D<sub>1</sub> mode) and the Q-species modes (~1015 cm<sup>−1</sup>) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"520-533"},"PeriodicalIF":3.7,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5876231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-27DOI: 10.1111/gbi.12552
Shreya Srivastava, Hailiang Dong, Oliver Baars, Yizhi Sheng
{"title":"Bioavailability of mineral-associated trace metals as cofactors for nitrogen fixation by Azotobacter vinelandii","authors":"Shreya Srivastava, Hailiang Dong, Oliver Baars, Yizhi Sheng","doi":"10.1111/gbi.12552","DOIUrl":"https://doi.org/10.1111/gbi.12552","url":null,"abstract":"<p>Life on Earth depends on N<sub>2</sub>-fixing microbes to make ammonia from atmospheric N<sub>2</sub> gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N<sub>2</sub> fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ<sup>15</sup>N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N<sub>2</sub>-fixing bacterium <i>Azotobacter vinelandii</i>. N<sub>2</sub> fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N<sub>2</sub> fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N<sub>2</sub> fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N<sub>2</sub> fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"507-519"},"PeriodicalIF":3.7,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5737766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-26DOI: 10.1111/gbi.12551
Brandt M. Gibson, James D. Schiffbauer, Adam F. Wallace, Simon A. F. Darroch
{"title":"The role of iron in the formation of Ediacaran ‘death masks’","authors":"Brandt M. Gibson, James D. Schiffbauer, Adam F. Wallace, Simon A. F. Darroch","doi":"10.1111/gbi.12551","DOIUrl":"https://doi.org/10.1111/gbi.12551","url":null,"abstract":"<p>The Ediacara biota are an enigmatic group of Neoproterozoic soft-bodied fossils that mark the first major radiation of complex eukaryotic and macroscopic life. These fossils are thought to have been preserved via pyritic “death masks” mediated by seafloor microbial mats, though little about the chemical constraints of this preservational pathway is known, in particular surrounding the role of bioavailable iron in death mask formation and preservational fidelity. In this study, we perform decay experiments on both diploblastic and triploblastic animals under a range of simulated sedimentary iron concentrations, in order to characterize the role of iron in the preservation of Ediacaran organisms. After 28 days of decay, we demonstrate the first convincing “death masks” produced under experimental laboratory conditions composed of iron sulfide and probable oxide veneers. Moreover, our results demonstrate that the abundance of iron in experiments is not the sole control on death mask formation, but also tissue histology and the availability of nucleation sites. This illustrates that Ediacaran preservation via microbial death masks need not be a “perfect storm” of paleoenvironmental porewater and sediment chemistry, but instead can occur under a range of conditions.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"421-434"},"PeriodicalIF":3.7,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5815517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-22DOI: 10.1111/gbi.12550
Alison T. Cribb, Sebastiaan J. van de Velde, William M. Berelson, David J. Bottjer, Frank A. Corsetti
{"title":"Ediacaran–Cambrian bioturbation did not extensively oxygenate sediments in shallow marine ecosystems","authors":"Alison T. Cribb, Sebastiaan J. van de Velde, William M. Berelson, David J. Bottjer, Frank A. Corsetti","doi":"10.1111/gbi.12550","DOIUrl":"https://doi.org/10.1111/gbi.12550","url":null,"abstract":"<p>The radiation of bioturbation during the Ediacaran–Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran–Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran–Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"435-453"},"PeriodicalIF":3.7,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12550","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5982731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-13DOI: 10.1111/gbi.12546
Ria L. Mitchell, Paul Kenrick, Silvia Pressel, Jeff Duckett, Christine Strullu-Derrien, Neil Davies, William J. McMahon, Rebecca Summerfield
{"title":"Terrestrial surface stabilisation by modern analogues of the earliest land plants: A multi-dimensional imaging study","authors":"Ria L. Mitchell, Paul Kenrick, Silvia Pressel, Jeff Duckett, Christine Strullu-Derrien, Neil Davies, William J. McMahon, Rebecca Summerfield","doi":"10.1111/gbi.12546","DOIUrl":"https://doi.org/10.1111/gbi.12546","url":null,"abstract":"<p>The evolution of the first plant-based terrestrial ecosystems in the early Palaeozoic had a profound effect on the development of soils, the architecture of sedimentary systems, and shifts in global biogeochemical cycles. In part, this was due to the evolution of complex below-ground (root-like) anchorage systems in plants, which expanded and promoted plant–mineral interactions, weathering, and resulting surface sediment stabilisation. However, little is understood about how these micro-scale processes occurred, because of a lack of in situ plant fossils in sedimentary rocks/palaeosols that exhibit these interactions. Some modern plants (e.g., liverworts, mosses, lycophytes) share key features with the earliest land plants; these include uni- or multicellular rhizoid-like anchorage systems or simple roots, and the ability to develop below-ground networks through prostrate axes, and intimate associations with fungi, making them suitable analogues. Here, we investigated cryptogamic ground covers in Iceland and New Zealand to better understand these interactions, and how they initiate the sediment stabilisation process. We employed multi-dimensional and multi-scale imaging, including scanning electron microscopy (SEM) and X-ray Computed Tomography (μCT) of non-vascular liverworts (Haplomitriopsida and complex thalloids) and mosses, with additional imaging of vascular lycopods. We find that plants interact with their substrate in multiple ways, including: (1) through the development of extensive surface coverings as mats; (2) entrapment of sediment grains within and between networks of rhizoids; (3) grain entwining and adherence by rhizoids, through mucilage secretions, biofilm-like envelopment of thalli on surface grains; and (4) through grain entrapment within upright ‘leafy’ structures. Significantly, μCT imaging allows us to ascertain that rhizoids are the main method for entrapment and stabilisation of soil grains in the thalloid liverworts. This information provides us with details of how the earliest land plants may have significantly influenced early Palaeozoic sedimentary system architectures, promoted in situ weathering and proto-soil development, and how these interactions diversified over time with the evolution of new plant organ systems. Further, this study highlights the importance of cryptogamic organisms in the early stages of sediment stabilisation and soil formation today.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"454-473"},"PeriodicalIF":3.7,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5832297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-12DOI: 10.1111/gbi.12549
Alexmar Cordova-Gonzalez, Daniel Birgel, Max Wisshak, Tim Urich, Florian Brinkmann, Yann Marcon, Gerhard Bohrmann, J?rn Peckmann
{"title":"A carbonate corrosion experiment at a marine methane seep: The role of aerobic methanotrophic bacteria","authors":"Alexmar Cordova-Gonzalez, Daniel Birgel, Max Wisshak, Tim Urich, Florian Brinkmann, Yann Marcon, Gerhard Bohrmann, J?rn Peckmann","doi":"10.1111/gbi.12549","DOIUrl":"https://doi.org/10.1111/gbi.12549","url":null,"abstract":"Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon‐Congo‐Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB‐B and CAB‐C) with apparent active methane seepage and one site (CAB‐D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB‐C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24‐01 clade. The presence of abundant 13C‐depleted lipid biomarkers including fatty acids (n‐C16:1ω8c, n‐C18:1ω8c, n‐C16:1ω5t), various 4‐mono‐ and 4,4‐dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB‐C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α‐methylcholest‐8(14)‐en‐3β,25‐diol is interpreted to be a specific biomarker for the Hyd24‐01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB‐C experiment at the REGAB pockmark.","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"491-506"},"PeriodicalIF":3.7,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6193380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-09DOI: 10.1111/gbi.12548
Adam Wierzbicki, Erik Wolfgring, Michael Wagreich, Mariusz K?dzierski, Regina Mertz-Kraus
{"title":"Astronomically controlled deep-sea life in the Late Cretaceous reconstructed from ultra-high-resolution inoceramid shell archives","authors":"Adam Wierzbicki, Erik Wolfgring, Michael Wagreich, Mariusz K?dzierski, Regina Mertz-Kraus","doi":"10.1111/gbi.12548","DOIUrl":"https://doi.org/10.1111/gbi.12548","url":null,"abstract":"<p>The periodicity of the mutual position of celestial bodies in the Earth-Moon-Sun system is crucial to the functioning of life on Earth. Biological rhythms affect most of the processes inside organisms, and some can be recorded in skeletal remains, allowing one to reconstruct the cycles that occur in nature deep in time. In the present study, we have used ultra-high-resolution elemental ratio scans of Mg/Ca, Sr/Ca and Mn/Ca from the fossil, ca. 70 Ma old inoceramid bivalve <i>Inoceramus</i> (<i>Platyceramus</i>) <i>salisburgensis</i> from deep aphotic water and identified a clear regularity of repetition of the geochemical signal every of ~0.006 mm. We estimate that the shell accretion rate is on average ~0.4 cm of shell thickness per lunar year. Visible light–dark lamination, interpreted as a seasonal signal corresponding to the semilunar-related cycle, gives a rough shell age estimate and growth rate for this large bivalve species supported by a dual feeding strategy. We recognize a biological clock that follows either a semilunar (model A) or a tidal (model B) cycle. This cycle of tidal dominance seems to fit better considering the biological behaviour of <i>I</i>. (<i>P</i>.) <i>salisburgensis</i>, including the estimated age and growth rate of the studied specimens. We interpret that the major control in such deep-sea environment, well below the photic zone and storm wave base, was due to barotropic tidal forces, thus changing the water pressure.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"474-490"},"PeriodicalIF":3.7,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12548","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6165802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2023-02-08DOI: 10.1111/gbi.12547
Zheng Gong, Guang-Yi Wei, Mojtaba Fakhraee, Lewis J. Alcott, Lei Jiang, Mingyu Zhao, Noah J. Planavsky
{"title":"Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope excursion","authors":"Zheng Gong, Guang-Yi Wei, Mojtaba Fakhraee, Lewis J. Alcott, Lei Jiang, Mingyu Zhao, Noah J. Planavsky","doi":"10.1111/gbi.12547","DOIUrl":"https://doi.org/10.1111/gbi.12547","url":null,"abstract":"<p>The Neoproterozoic carbonate record contains multiple carbon isotope anomalies, which are the subject of intense debate. The largest of these anomalies, the Shuram excursion (SE), occurred in the mid-Ediacaran (~574–567 Ma). Accurately reconstructing marine redox landscape is a clear path toward making sense of the mechanism that drives this δ<sup>13</sup>C anomaly. Here, we report new uranium isotopic data from the shallow-marine carbonates of the Wonoka Formation, Flinders Ranges, South Australia, where the SE is well preserved. Our data indicate that the δ<sup>238</sup>U trend during the SE is highly reproducible across globally disparate sections from different depositional settings. Previously, it was proposed that the positive shift of δ<sup>238</sup>U values during the SE suggests an extensive, near-modern level of marine oxygenation. However, recent publications suggest that the fractionation of uranium isotopes in ferruginous and anoxic conditions is comparable, opening up the possibility of non-unique interpretations of the carbonate uranium isotopic record. Here, we build on this idea by investigating the SE in conjunction with additional geochemical proxies. Using a revised uranium isotope mass balance model and an inverse stochastic carbon cycle model, we reevaluate models for δ<sup>13</sup>C and δ<sup>238</sup>U trends during the SE. We suggest that global seawater δ<sup>238</sup>U values during the SE could be explained by an expansion of ferruginous conditions and do not require a near-modern level of oxygenation during the mid-Ediacaran.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"407-420"},"PeriodicalIF":3.7,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6130307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}