Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments

IF 2.7 2区 地球科学 Q2 BIOLOGY
Geobiology Pub Date : 2023-09-26 DOI:10.1111/gbi.12577
Flavia A. Belato, Beatriz Mello, Christopher J. Coates, Kenneth M. Halanych, Federico D. Brown, André C. Morandini, Juliana de Moraes Leme, Ricardo I. F. Trindade, Elisa Maria Costa-Paiva
{"title":"Divergence time estimates for the hypoxia-inducible factor-1 alpha (HIF1α) reveal an ancient emergence of animals in low-oxygen environments","authors":"Flavia A. Belato,&nbsp;Beatriz Mello,&nbsp;Christopher J. Coates,&nbsp;Kenneth M. Halanych,&nbsp;Federico D. Brown,&nbsp;André C. Morandini,&nbsp;Juliana de Moraes Leme,&nbsp;Ricardo I. F. Trindade,&nbsp;Elisa Maria Costa-Paiva","doi":"10.1111/gbi.12577","DOIUrl":null,"url":null,"abstract":"<p>Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635–560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957–1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12577","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Unveiling the tempo and mode of animal evolution is necessary to understand the links between environmental changes and biological innovation. Although the earliest unambiguous metazoan fossils date to the late Ediacaran period, molecular clock estimates agree that the last common ancestor (LCA) of all extant animals emerged ~850 Ma, in the Tonian period, before the oldest evidence for widespread ocean oxygenation at ~635–560 Ma in the Ediacaran period. Metazoans are aerobic organisms, that is, they are dependent on oxygen to survive. In low-oxygen conditions, most animals have an evolutionarily conserved pathway for maintaining oxygen homeostasis that triggers physiological changes in gene expression via the hypoxia-inducible factor (HIFa). However, here we confirm the absence of the characteristic HIFa protein domain responsible for the oxygen sensing of HIFa in sponges and ctenophores, indicating the LCA of metazoans lacked the functional protein domain as well, and so could have maintained their transcription levels unaltered under the very low-oxygen concentrations of their environments. Using Bayesian relaxed molecular clock dating, we inferred that the ancestral gene lineage responsible for HIFa arose in the Mesoproterozoic Era, ~1273 Ma (Credibility Interval 957–1621 Ma), consistent with the idea that important genetic machinery associated with animals evolved much earlier than the LCA of animals. Our data suggest at least two duplication events in the evolutionary history of HIFa, which generated three vertebrate paralogs, products of the two successive whole-genome duplications that occurred in the vertebrate LCA. Overall, our results support the hypothesis of a pre-Tonian emergence of metazoans under low-oxygen conditions, and an increase in oxygen response elements during animal evolution.

缺氧诱导因子-1α(HIF1α)的分化时间估计揭示了低氧环境中动物的古老出现。
揭示动物进化的节奏和模式对于理解环境变化和生物创新之间的联系是必要的。尽管最早明确的后生动物化石可以追溯到埃迪卡拉纪晚期,但分子钟估计一致认为,所有现存动物的最后一个共同祖先(LCA)出现了~850 Ma,在托尼安时期,在最古老的证据表明约635-560年存在广泛的海洋氧化作用之前 埃迪卡拉纪的马。后生动物是有氧生物,也就是说,它们依赖氧气生存。在低氧条件下,大多数动物都有一条进化上保守的维持氧稳态的途径,通过缺氧诱导因子(HIFa)触发基因表达的生理变化。然而,在这里,我们证实了海绵和栉水母中缺乏负责HIFa氧传感的特征性HIFa蛋白结构域,这表明后生动物的LCA也缺乏功能性蛋白结构域。因此,在其环境的低氧浓度下,它们的转录水平可能保持不变。使用贝叶斯弛豫分子时钟定年,我们推断负责HIFa的祖先基因谱系出现在中元古代,约1273年 马(可信区间957-1621 马),这与与与动物相关的重要遗传机制比动物的生命周期评价进化得早得多的观点一致。我们的数据表明,HIFa的进化史上至少发生了两次重复事件,产生了三个脊椎动物旁系,这是脊椎动物LCA中连续两次全基因组重复的产物。总的来说,我们的研究结果支持了在低氧条件下出现前托尼时代后生动物的假设,以及动物进化过程中氧气反应元件的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geobiology
Geobiology 生物-地球科学综合
CiteScore
6.80
自引率
5.40%
发文量
56
审稿时长
3 months
期刊介绍: The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time. Geobiology invites submission of high-quality articles in the following areas: Origins and evolution of life Co-evolution of the atmosphere, hydrosphere and biosphere The sedimentary rock record and geobiology of critical intervals Paleobiology and evolutionary ecology Biogeochemistry and global elemental cycles Microbe-mineral interactions Biomarkers Molecular ecology and phylogenetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信