Siqi Wu, Joachim Reitner, David A. T. Harper, Jianxin Yu, Zhong-Qiang Chen
{"title":"二叠纪末期大灭绝后的新角质海绵为生物恢复提供了启示","authors":"Siqi Wu, Joachim Reitner, David A. T. Harper, Jianxin Yu, Zhong-Qiang Chen","doi":"10.1111/gbi.12582","DOIUrl":null,"url":null,"abstract":"<p>We challenge the prevailing view that the end-Permian extinction impeded the Triassic evolution of sponges. Here, we report a deep-water community dominated by abundant keratose sponges in the lowest Triassic strata from Southwest China. The sponge fossils occur as dark elliptical imprints in mudstone with distinct oscula on their tops. The structure of preserved fibers suggests closest affinity with the extant Dictyoceratida, an aspiculate demosponge. The exceptional preservation plays a crucial role in retaining their exquisite structures. Sedimentary, taphonomic, pyrite framboid, and trace elemental analyses indicate that the sponges proliferated in an oxygen-poor habitat, demonstrating the high tolerance of sponges to severe conditions. Sponge proliferation is a signal of environmental upheaval but they also stabilized the ecosystem, driving the first phase of biotic recovery after the end-Permian extinction.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"22 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New keratose sponges after the end-Permian extinction provide insights into biotic recoveries\",\"authors\":\"Siqi Wu, Joachim Reitner, David A. T. Harper, Jianxin Yu, Zhong-Qiang Chen\",\"doi\":\"10.1111/gbi.12582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We challenge the prevailing view that the end-Permian extinction impeded the Triassic evolution of sponges. Here, we report a deep-water community dominated by abundant keratose sponges in the lowest Triassic strata from Southwest China. The sponge fossils occur as dark elliptical imprints in mudstone with distinct oscula on their tops. The structure of preserved fibers suggests closest affinity with the extant Dictyoceratida, an aspiculate demosponge. The exceptional preservation plays a crucial role in retaining their exquisite structures. Sedimentary, taphonomic, pyrite framboid, and trace elemental analyses indicate that the sponges proliferated in an oxygen-poor habitat, demonstrating the high tolerance of sponges to severe conditions. Sponge proliferation is a signal of environmental upheaval but they also stabilized the ecosystem, driving the first phase of biotic recovery after the end-Permian extinction.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12582\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12582","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
New keratose sponges after the end-Permian extinction provide insights into biotic recoveries
We challenge the prevailing view that the end-Permian extinction impeded the Triassic evolution of sponges. Here, we report a deep-water community dominated by abundant keratose sponges in the lowest Triassic strata from Southwest China. The sponge fossils occur as dark elliptical imprints in mudstone with distinct oscula on their tops. The structure of preserved fibers suggests closest affinity with the extant Dictyoceratida, an aspiculate demosponge. The exceptional preservation plays a crucial role in retaining their exquisite structures. Sedimentary, taphonomic, pyrite framboid, and trace elemental analyses indicate that the sponges proliferated in an oxygen-poor habitat, demonstrating the high tolerance of sponges to severe conditions. Sponge proliferation is a signal of environmental upheaval but they also stabilized the ecosystem, driving the first phase of biotic recovery after the end-Permian extinction.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.