GeobiologyPub Date : 2022-09-23DOI: 10.1111/gbi.12525
Toby A. Halamka, Jonathan H. Raberg, Jamie M. McFarlin, Adam D. Younkin, Christopher Mulligan, Xiao-Lei Liu, Sebastian H. Kopf
{"title":"Production of diverse brGDGTs by Acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis","authors":"Toby A. Halamka, Jonathan H. Raberg, Jamie M. McFarlin, Adam D. Younkin, Christopher Mulligan, Xiao-Lei Liu, Sebastian H. Kopf","doi":"10.1111/gbi.12525","DOIUrl":"https://doi.org/10.1111/gbi.12525","url":null,"abstract":"<p>Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are bacterial membrane lipids that are frequently employed as paleoenvironmental proxies because of the strong empirical correlations between their relative abundances and environmental temperature and pH. Despite the ubiquity of brGDGTs in modern and paleoenvironments, the source organisms of these enigmatic compounds have remained elusive, requiring paleoenvironmental applications to rely solely on observed environmental correlations. Previous laboratory and environmental studies have suggested that the globally abundant bacterial phylum of the Acidobacteria may be an important brGDGT producer in nature. Here, we report on experiments with a cultured Acidobacterium, <i>Solibacter usitatus</i>, that makes a large portion of its cellular membrane (24 ± 9% across all experiments) out of a structurally diverse set of tetraethers including the common brGDGTs Ia, IIa, IIIa, Ib, and IIb. <i>Solibacter usitatus</i> was grown across a range of conditions including temperatures from 15 to 30°C, pH from 5.0 to 6.5, and O<sub>2</sub> from 1% to 21%, and demonstrated pronounced shifts in the degree of brGDGT methylation across these growth conditions. The temperature response in culture was in close agreement with trends observed in published environmental datasets, supporting a physiological basis for the empirical relationship between brGDGT methylation number and temperature. However, brGDGT methylation at lower temperatures (15 and 20°C) was modulated by culture pH with higher pH systematically increasing the degree of methylation. In contrast, pH had little effect on brGDGT cyclization, supporting the hypothesis that changes in bacterial community composition may underlie the link between cyclization number and pH observed in environmental samples. Oxygen concentration likewise affected brGDGT methylation highlighting the potential for this environmental parameter to impact paleotemperature reconstruction. Low O<sub>2</sub> culture conditions further resulted in the production of uncommon brGDGT isomers that could be indicators of O<sub>2</sub> limitation. Finally, the production of brGTGTs (trialkyl tetraethers) in addition to the previously discovered iso-C15-based mono- and diethers in <i>S. usitatus</i> suggests a potential biosynthetic pathway for brGDGTs that uses homologs of the archaeal tetraether synthase (Tes) enzyme for tetraether synthesis from diethers.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 1","pages":"102-118"},"PeriodicalIF":3.7,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6012816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2022-09-10DOI: 10.1111/gbi.12523
Christine Nims, Jena E. Johnson
{"title":"Exploring the secondary mineral products generated by microbial iron respiration in Archean ocean simulations","authors":"Christine Nims, Jena E. Johnson","doi":"10.1111/gbi.12523","DOIUrl":"https://doi.org/10.1111/gbi.12523","url":null,"abstract":"<p>Marine chemical sedimentary deposits known as Banded Iron Formations (BIFs) archive Archean ocean chemistry and, potentially, signs of ancient microbial life. BIFs contain a diversity of iron- and silica-rich minerals in disequilibrium, and thus many interpretations of these phases suggest they formed secondarily during early diagenetic processes. One such hypothesis posits that the early diagenetic microbial respiration of primary iron(III) oxides in BIFs resulted in the formation of other iron phases, including the iron-rich silicates, carbonates, and magnetite common in BIF assemblages. Here, we simulated this proposed pathway in laboratory incubations combining a model dissimilatory iron-reducing (DIR) bacterium, <i>Shewanella putrefaciens</i> CN32, and the ferric oxyhydroxide mineral ferrihydrite under conditions mimicking the predicted Archean seawater geochemistry. We assessed the impact of dissolved silica, calcium, and magnesium on the bioreduced precipitates. After harvesting the solid products from these experiments, we analyzed the reduced mineral phases using Raman spectroscopy, electron microscopy, powder x-ray diffraction, and spectrophotometric techniques to identify mineral precipitates and track the bulk distributions of Fe(II) and Fe(III). These techniques detected a diverse range of calcium carbonate morphologies and polymorphism in incubations with calcium, as well as secondary ferric oxide phases like goethite in silica-free experiments. We also identified aggregates of curling, iron- and silica-rich amorphous precipitates in all incubations amended with silica. Although ferric oxides persist even in our electron acceptor-limited incubations, our observations indicate that microbial iron reduction of ferrihydrite is a viable pathway for the formation of early iron silicate phases. This finding allows us to draw parallels between our experimental proto-silicates and the recently characterized iron silicate nanoinclusions in BIF chert deposits, suggesting that early iron silicates could possibly be signatures of iron-reducing metabolisms on early Earth.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"743-763"},"PeriodicalIF":3.7,"publicationDate":"2022-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12523","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6182599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
GeobiologyPub Date : 2022-09-08DOI: 10.1111/gbi.12522
Ileana Pérez-Rodríguez, Stefan M. Sievert, Marilyn L. Fogel, Dionysis I. Foustoukos
{"title":"Physiological and metabolic responses of chemolithoautotrophic \u0000 \u0000 \u0000 \u0000 NO\u0000 3\u0000 −\u0000 \u0000 \u0000 reducers to high hydrostatic pressure","authors":"Ileana Pérez-Rodríguez, Stefan M. Sievert, Marilyn L. Fogel, Dionysis I. Foustoukos","doi":"10.1111/gbi.12522","DOIUrl":"https://doi.org/10.1111/gbi.12522","url":null,"abstract":"<p>We investigated the impact of pressure on thermophilic, chemolithoautotrophic <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math> reducing bacteria of the phyla <i>Campylobacterota</i> and <i>Aquificota</i> isolated from deep-sea hydrothermal vents. Batch incubations at 5 and 20 MPa resulted in decreased <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math> consumption, lower cell concentrations, and overall slower growth in <i>Caminibacter mediatlanticus</i> (<i>Campylobacterota</i>) and <i>Thermovibrio ammonificans</i> (<i>Aquificota</i>), relative to batch incubations near standard pressure (0.2 MPa) conditions. Nitrogen isotope fractionation effects from chemolithoautotrophic <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math> reduction by both microorganisms were, on the contrary, maintained under all pressure conditions. Comparable chemolithoautotrophic <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math> reducing activities between previously reported natural hydrothermal vent fluid microbial communities dominated by <i>Campylobacterota</i> at 25 MPa and <i>Campylobacterota</i> laboratory isolates at 0.2 MPa, suggest robust similarities in cell-specific <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>NO</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </semantics></math> reduction rates and doubling times between microbial populations and communities growing maximally under similar temperature conditions. Physiological and metabolic comparisons of our results with other studies of pressure effects on anaerobic chemolithoautotrophic processes (i.e., microbial S<sup>0</sup>-oxidation coupled to Fe(III) reduction and hydrogenotrophic methanogenesis) suggest that anaerobic chemolithoautotrophs relying on oxidation–reduction (redox) reactions that yield higher Gibbs energies experience larger shifts in cell-specific respiration rates and doubling times at increased pressures. Overall, our results advance understanding of the role of pressure, its relationship with temperature and r","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"20 6","pages":"857-869"},"PeriodicalIF":3.7,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5768156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}