Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post
{"title":"生物硅与地质类似物的矿物学表征","authors":"Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post","doi":"10.1111/gbi.12553","DOIUrl":null,"url":null,"abstract":"<p>Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-A<sub>N</sub> are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO<sub>2</sub> network modes (D<sub>1</sub> mode) and the Q-species modes (~1015 cm<sup>−1</sup>) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.</p>","PeriodicalId":173,"journal":{"name":"Geobiology","volume":"21 4","pages":"520-533"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12553","citationCount":"1","resultStr":"{\"title\":\"Mineralogical characterization of biosilicas versus geological analogs\",\"authors\":\"Gabriela A. Farfan, David A. McKeown, Jeffrey E. Post\",\"doi\":\"10.1111/gbi.12553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-A<sub>N</sub> are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO<sub>2</sub> network modes (D<sub>1</sub> mode) and the Q-species modes (~1015 cm<sup>−1</sup>) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.</p>\",\"PeriodicalId\":173,\"journal\":{\"name\":\"Geobiology\",\"volume\":\"21 4\",\"pages\":\"520-533\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbi.12553\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geobiology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12553\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geobiology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbi.12553","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Mineralogical characterization of biosilicas versus geological analogs
Non-crystalline silica mineraloids are essential to life on Earth as they provide architectural structure to dominant primary producers, such as plants and phytoplankton, as well as to protists and sponges. Due to the difficulty in characterizing and quantifying the structure of highly disordered X-ray amorphous silica, relatively little has been done to understand the mineralogy of biogenic silica and how this may impact the material properties of biogenic silica, such as hardness and strength, or how biosilica might be identified and differentiated from its inorganic geological counterparts. Typically, geologically formed opal-A and hyalite opal-AN are regarded as analogs to biogenic silica, however, some spectroscopic and imaging studies suggest that this might not be a reasonable assumption. In this study, we use a variety of techniques (X-ray diffraction, Raman spectroscopy, and scanning electron microscopy) to compare differences in structural disorder and bonding environments of geologically formed hydrous silicas (Opal-A, hyalite, geyserite) and silica glass versus biogenic silicas from an array of organisms. Our results indicate differences in the levels of structural disorder and the Raman-observed bonding environments of the SiO2 network modes (D1 mode) and the Q-species modes (~1015 cm−1) between varieties of biogenic silicas and geologically formed silicas, which aligns with previous studies that suggest fundamental differences between biogenic and geologically formed silica. Biosilicas also differ structurally from one another by species of organism. Our mineralogical approach to characterizing biosilicas and differentiating them from other silicas may be expanded to future diagenesis studies, and potentially applied to astrobiology studies of Earth and other planets.
期刊介绍:
The field of geobiology explores the relationship between life and the Earth''s physical and chemical environment. Geobiology, launched in 2003, aims to provide a natural home for geobiological research, allowing the cross-fertilization of critical ideas, and promoting cooperation and advancement in this emerging field. We also aim to provide you with a forum for the rapid publication of your results in an international journal of high standing. We are particularly interested in papers crossing disciplines and containing both geological and biological elements, emphasizing the co-evolutionary interactions between life and its physical environment over geological time.
Geobiology invites submission of high-quality articles in the following areas:
Origins and evolution of life
Co-evolution of the atmosphere, hydrosphere and biosphere
The sedimentary rock record and geobiology of critical intervals
Paleobiology and evolutionary ecology
Biogeochemistry and global elemental cycles
Microbe-mineral interactions
Biomarkers
Molecular ecology and phylogenetics.