{"title":"Microbial and insect oils: A sustainable approach to functional lipid","authors":"Ityotagher P. Aondoakaa, Casimir C. Akoh","doi":"10.1002/aocs.12851","DOIUrl":"10.1002/aocs.12851","url":null,"abstract":"<p>The increasing global population, coupled with the effects of climate change on agricultural activities has spurred a demand for sustainable food production to meet human needs. In response to this, there has been a growing interest in sustainable food production initiatives. One of such initiatives is harnessing microbial and insect lipids as valuable ingredients to address increase in demand for lipids across various sectors, including functional food, nutritional supplements, and biodiesel production. Over the last decades, there has been increasing scientific investigations exploring lipid from algae, microbes, and insects as alternatives to traditional agro- and marine-based sources. This review, therefore, presents progress made in microbial and insect oils production, with emphasis on sustainability. Emerging extraction techniques, regulatory and safety requirements, and challenges that exist in the production and utilization of these new lipids are also discussed. The review shows that lipids from a wide range of oleaginous microorganisms and insect species have the potential to serve as a valuable ingredient for healthful food preparation. However, challenges such as cultural acceptance, lack of standardized regulations, high cost, and low yield associated with most emerging environmentally friendly extraction technologies continue to hinder widespread use or adoption of microbial and insect lipids on a global scale. These challenges call for innovations to reduce cost of production and improve lipids yield. So far, a substantial progress has been made in the utilization of readily available feedstocks such as industrial food wastes and sugar-rich industrial wastewater to grow insects and microorganisms which will significantly reduce the processing costs.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 1","pages":"5-33"},"PeriodicalIF":1.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of non-thermal processing on the nutritional quality and bioactive properties of industrial hempseed flours and protein isolate","authors":"Anh T. L. Nguyen, Alberta N. A. Aryee","doi":"10.1002/aocs.12840","DOIUrl":"10.1002/aocs.12840","url":null,"abstract":"<p>There is an unmet demand for plant-based ingredients with desirable nutritional, techno-functional properties, and health benefits. In this study, the composition, nutritional quality, and bioactives in industrial hempseed flours and protein isolate generated by milling, germination, isoelectric precipitation (IEP), and enzyme-assisted extraction (EAE) were evaluated. Moisture, ash, fat, protein, phytic acid, tannin, and trypsin inhibitor content of the hempseed flours and protein isolate were 2.80%–6.46%, 5.07%–28.89%, 0.00%–31.44%, 22.71%–89.94%, 0.55%–1.05%, 274.24–1300.76 μg/g, and 0.00–42.66 U/g, respectively. IEP resulted in the highest protein content (89.94%), indicative of its effective to isolate hempseed protein. Germination and IEP significantly reduced phytic acid and tannin contents by 1.53- and 3.63-fold, respectively. All processing methods improved in vitro protein digestibility (IVPD). SDS-PAGE analysis revealed comparable band patterns in milled and protein isolate, with a strong 50 kDa band attributed as edestin. Amino acid analysis showed that EAE augmented total essential amino acids, particularly protease. Milling and pronase treatment yielded the highest and lowest IVPD-corrected amino acid score (IVPDCAAS) of 76% and 47%, respectively. Milled and germinated flours contained varying amounts of γ-tocopherol, lutein, zeaxanthin, α-carotene, and β-carotene. Germinated flour exhibited elevated levels of total phenolic (14.36 mg/g), and flavonoid (1.76 mg/g) contents, FRAP, TEAC, and DPPH compared to the other flours suggesting superior antioxidant capacity. Strong positive correlations (<i>r</i> >0.70) were found between IVPD and phytic acid for the protein isolate, total phenolic content, and FRAP for IEP and germinated flours. Overall, hempseed flours with diverse properties could be produced using non-thermal processing.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"905-920"},"PeriodicalIF":1.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of hazelnut oil oleogels for the preparation of milk couverture type compound chocolates: Composition, properties, and sensory evaluations","authors":"Emin Yılmaz, Ceren Öz","doi":"10.1002/aocs.12850","DOIUrl":"10.1002/aocs.12850","url":null,"abstract":"<p>The aim of this study was to use oleogels in compound chocolates. A control sample with cocoa butter (CNT) and two compound chocolates with hazelnut oil-sunflower wax oleogel (SWO-CC), and polyglycerol stearate oleogel (PGSO-CC) were prepared with the same recipe. The main properties and compositions of the samples were quite similar. While CNT sample included only 37.97% of total unsaturated fatty acids, it was 74.19 and 63.08% in the SWO-CC and PGSO-CC, respectively. The melting peak temperatures were 32.1, 25.4, and 23.8°C for CNT, SWO-CC and PGSO-CC. The samples had 11.75%, 74.25%, and 74.25% shape retention index values at 60°C. Clearly compound chocolates melted at lower temperatures, but retained their shape at higher temperatures. After 15-day temperature fluctuation storage, no fat bloom was developed. Rheological data showed that the PGSO-CC sample was stiffer among all, and the compound chocolates melted slowly up to 40°C, but CNT melted sharply at 38°C. Further, the PGSO-CC sample showed a lubricating behavior. Although CNT sample included 7 volatile aromatics, SWO-CC and PGSO-CC samples had 17 and 14 compounds, respectively. Trained panel described the samples with 13 attributes, and most profoundly the compound chocolates had lower shape, surface gloss, coffee, bitter, cooling, hardness scores, and higher coating scores. Consumer test revealed that compound chocolates had lower appearance scores, and equal aroma scores. The flavor score and acceptability were highest for the PGSO-CC sample. Overall, this study proved that heat stable and sensorially acceptable compound chocolates could be prepared from the oleogels.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1401-1416"},"PeriodicalIF":1.9,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilization of oil-in-water emulsion gels by pH-induced electrostatic interactions between soybean protein isolate microgel particles and xanthan gum","authors":"Jixian Mao, Lujie Cui, Zong Meng","doi":"10.1002/aocs.12845","DOIUrl":"10.1002/aocs.12845","url":null,"abstract":"<p>In this paper, a colloidal dispersion at different pH containing soybean protein isolate (SPI) microgel particles and xanthan gum (XG) was used as the aqueous phase to prepare O/W emulsion gels with soybean oil. Properties of SPI microgel particles were analyzed by particle size, Zeta-potential, secondary structure, optical contact angle, dynamic interface tension, and SEM testing, respectively. Results showed that pH impact microgels particle size and Zeta-potential and their emulsification properties. It turned out that only at pH 3, 6, 7, and 8 can construct emulsions successfully. Based on a comparison of microstructure and macroscopic properties, it was found that at pH 3, proteins and polysaccharides were oppositely charged, electrostatic attraction between them reduced proteins located at the interface, and was more likely to form larger droplets, resulting in a bimodal droplet distribution and larger sizes. Conversely, at the pH of 6, 7, and 8, respectively, emulsions exhibited a uniform droplet distribution and more solid-like rheological properties due to the powerful electrostatic repulsion between SPI and XG. Also, emulsion gels co-stabilized with proteins and polysaccharides under electrostatic repulsion conditions showed an ideal recovery ability. Overall, this work would be beneficial to the use of emulsion gels in fat substitute systems.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1287-1298"},"PeriodicalIF":1.9,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140829371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of threshold algorithms for automatic processing of fat crystal microscopic images based on ImageJ","authors":"Miao Xiong, Ang Qi, Lu Zhang","doi":"10.1002/aocs.12846","DOIUrl":"10.1002/aocs.12846","url":null,"abstract":"<p>Microscopic image analysis is a crucial tool in fat crystallization research, enabling the analysis of crystal size, network structure, fractal dimension and other parameters through binarization. It is essential to seek an appropriate thresholding algorithm to binarize fat crystal images, which plays a vital role in image segmentation. In this article, the effectiveness of 17 thresholding algorithms such as Default, Mean, IsoData, Otsu, Li and Triangle were analyzed in processing fat crystal images with different shapes, background colors and image intensities. This was expected to discover a stable and objective thresholding algorithm for the binarization of fat crystal images. The performance evaluation was conducted according to the peak signal noise ratio (PSNR), structural similarity index (SSIM) and region non-uniformity (RNU) parameter. Moreover, the comparative analysis of crystal size error, crystal area fraction and intraclass correlation coefficients (ICC) for fractal dimension values would provide a foundation for the selection of thresholding techniques for fat crystal network images. The results indicated that the Default algorithm exhibited remarkable robustness and applicability with high-quality and stable outputs in fat crystal image processing.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1455-1466"},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140803979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient enzymatic synthesis of vitamin E succinate using an organic solvent-stable immobilized lipase","authors":"Wenlin Li, Sen Lin, Dongming Lan, Yonghua Wang","doi":"10.1002/aocs.12847","DOIUrl":"10.1002/aocs.12847","url":null,"abstract":"<p>Vitamin E succinate has gained substantial attention as a potential therapeutic agent for cancer treatment due to its biomedical activities. One of the prominent methods of synthesizing vitamin E succinate is through enzymatic processes, which, although advantageous, presents inherent challenges related to optimization, scalability, and particularly, the poor stability of lipases in organic solvents. Our study addresses these challenges by conducting a comprehensive comparative analysis between Lipase UM1 and three other immobilized commercial lipases, demonstrating Lipase UM1's enhanced resistance to organic solvents and its superior efficiency in vitamin E succinate production. Further optimization experiments with Lipase UM1 led to an unprecedented conversion of 99%. Additionally, we scaled the reaction to a proof-of-concept industrial level. The synthesized product was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance analysis, ensuring its quality and consistency. This study validates Lipase UM1 as an efficient catalyst for vitamin E succinate synthesis, offering a promising avenue for industrial production with potential applications in cancer therapy and beyond.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1357-1366"},"PeriodicalIF":1.9,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140806574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harnessing the potential of oilcane waste mud for recovering biobased waxes","authors":"Shivali Banerjee, Kristen K. Eilts, Vijay Singh","doi":"10.1002/aocs.12844","DOIUrl":"10.1002/aocs.12844","url":null,"abstract":"<p>Oilcane is an engineered sugarcane with the ability to hyper-accumulate vegetative lipids. It is processed to obtain juice and bagasse as a potential substrate for the production of biofuels and biochemicals. The juice comprises solid particles that are separated as waste mud before the fermentation of the juice. In this study, the oilcane waste mud (OWM) generated from 1000 liters of oilcane juice was quantified and evaluated as a potential resource for recovering biobased waxes. Hexane and ethyl acetate were evaluated as two different solvents for extracting waxes from OWM followed by its purification using acetone. The extracted biobased wax samples were characterized for their chemical and thermal profiles which were then compared with commercial natural waxes. Detailed mass balance shows that 53.6 ± 2.6 kg (dry basis) of solid OWM gets generated upon processing 1000 L (~1068 kg) of oilcane juice. Hexane and ethyl acetate led to a crude wax yield of 25.6 ± 0.2% and 16.6 ± 0.4% (wt/wt, dry basis) respectively from OWM at the end of 8 h. The relative purification of the wax samples was reported in the range of 58%–65% (wt/wt). The purified OWM wax has a melting point of 74.7°C. The waste mud was valorized as a source of biobased waxes with characteristic chemical and thermal profiles comparable to commercial natural waxes (carnauba and beeswax). Considering the decline in the supply of petroleum wax in the future coupled with the switch to “greener” alternative products by consumers, OWM could be a valuable source of natural wax in the industrial sector reducing the dependence on petroleum waxes. Eventually, recovering biobased wax as a co-product from OWM would bring in an additional stream of revenue leading to the development of a zero-waste biorefinery based on bioenergy crops.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1417-1430"},"PeriodicalIF":1.9,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aocs.12844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jill K. Winkler-Moser, Richard D. Ashby, Hailemichael O. Yosief, Joseph Msanne, Steven C. Peterson, Grigor B. Bantchev, Steven C. Cermak, Frederick C. Felker
{"title":"Properties of soybean oil oleogels produced from sophorolipid-derived hydroxy fatty acids, methyl esters and hydrogenated Lesquerella seed oil","authors":"Jill K. Winkler-Moser, Richard D. Ashby, Hailemichael O. Yosief, Joseph Msanne, Steven C. Peterson, Grigor B. Bantchev, Steven C. Cermak, Frederick C. Felker","doi":"10.1002/aocs.12843","DOIUrl":"10.1002/aocs.12843","url":null,"abstract":"<p>Sophorolipids (SL) are glycolipids composed of a sophorose head-group linked to a hydroxy-fatty acid tail which makes them a potential source of structurally unique biobased hydroxy fatty acids. Furthermore, Lesquerella is a native southwestern plant that has been commercially cultivated as a replacement for castor seed oil due to high seed oil concentrations of 14-hydroxy-eicosenoic acid (14-OH-C20:1<i>c</i>11). In this study, SL-derived hydroxy fatty acids and methyl esters containing 15-hydroxy-palmitic acid (15-OH-C16), 17-hydroxy-stearic acid (17-OH-C18), 15-hydroxy-palmitic acid methyl ester (15-OH-C16ME), 17-hydroxy-stearic acid methyl ester (17-OH-C18ME), and 13-hydroxy-behenic acid methyl ester (13OH-C22ME) were obtained from the SL produced by two yeast strains. In addition, hydrogenated Lesquerella oil (HLO) was made with ~62% 14-OH-eicosanoic (C20) acid (14-OH-C20). These materials, along with 12-hydroxy-stearic acid (12-OH-C18) as a standard for comparison were used to make soybean oil oleogels, and their properties determined. The minimum gelation concentration (MGC) of 12-OH-C18 was 1% (wt/wt), while the MGC of 15-OH-C16 and 17-OH-C18 were 5% and 10%, respectively. The MGC for 15-OH-C16ME was 5%, but 17-OH-C18ME was unable to form a stable gel at concentrations up to 10%. HLO formed a viscous solution rather than an oleogel, but its crystal morphology underwent a large transformation during storage over a 2.5-month period, after which it was able to form a stable gel. SL-based hydroxy fatty acids were able to form oleogels in soybean oil and have the potential to be considered as a new source of low-molecular weight oleogelators as well as biobased hydroxy fatty acids.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1383-1399"},"PeriodicalIF":1.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huazhen Liu, Mohammad Fazel Soltani Gishini, Micah Pope, Todd Doehring, Pradeep Kachroo, David Hildebrand
{"title":"Comparison of the quality of soybean meal and oil by soybean production origin","authors":"Huazhen Liu, Mohammad Fazel Soltani Gishini, Micah Pope, Todd Doehring, Pradeep Kachroo, David Hildebrand","doi":"10.1002/aocs.12835","DOIUrl":"10.1002/aocs.12835","url":null,"abstract":"<p>Previous reports indicate variable soybean quality parameters exported from different geographic regions. This review compares soybean and soybean co-products grown under diverse environmental conditions. While numerous studies have been conducted on whole soybean and soybean meal (SBM) composition by origin, similar analysis of soybean oil is lacking. This review has two objectives: 1) summarize soybean and SBM quality by origin using a meta-analysis approach, and 2) analyze collected crude degummed soybean oil samples that originate from the US, Brazil and Argentina for key quality attributes. Soybeans from Brazil have higher levels of protein (<i>P</i> < 0.05) than US soybeans, but US soybeans have lower heat damage (<i>P</i> < 0.05) and total damage (<i>P</i> < 0.05) than soybeans from Brazil. US and Brazil SBM have higher crude protein (CP) (<i>P</i> < 0.05) than SBM from Argentina. At equal CP content, US SBM had less fiber (<i>P</i> < 0.0001), more sucrose (<i>P</i> < 0.0001) and lysine (<i>P</i> < 0.0001) and better protein quality than South American SBMs. Methionine, threonine, and cysteine levels were similar in soybean protein from US and Argentina and higher than that in soybean protein from Brazil. Crude degummed soybean oil from Brazil had more (<i>P</i> < 0.05) free fatty acids, neutral oil loss, phosphorus, calcium and magnesium than crude degummed soybean oil from the US or Argentina. Our analysis suggests that environmental conditions under which soybeans are grown, stored, and handled can have a large impact on chemical composition and nutrient quality of soybean meal and soybean oil.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 9","pages":"817-826"},"PeriodicalIF":1.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of olive leaves powder addition on extra virgin olive oil: Sensory, quality, nutritional and volatile compounds implications","authors":"Andressa Anelo Álvares, Lucas Tolio Silva, Luana Souza Cavalcante, Dafne Marcelle Alves Pires, Isabel Cristina Kasper Machado, Ana Lúcia Aboy, Wendell Mello, Camila Scheid, Josias Merib, Juliano Garavaglia","doi":"10.1002/aocs.12841","DOIUrl":"10.1002/aocs.12841","url":null,"abstract":"<p>Olive leaves currently represent a waste from olive oil industry that can be reused as source of polyphenols and other compounds. The objective of this study was to test whether incorporation of olive leaf powder directly in olive oils can enhance and modify its chemical-sensory quality. Thus, leaves from cultivar “Koroneiki” were washed, sanitized, dried (37–40°C for 48 h) and milled until obtaining a powder that was added to “Arbequina” and “Koroneiki” extra virgin olive oils, at 1% and 3%. The oils were stored in dark conditions at room temperature and samples were checked after 0, 3, 6 and 12 months. The quality parameters, sensory properties, and nutrition quality (total phenolics, antioxidant, oleuropein and alpha-tocopherol) were evaluated. The olive leaves affected quality and chemical composition, mainly increasing resistance to oxidation, which was not verified in samples without leaves addition. The incorporation of leaves powder significantly increased the contents of C6-C5 alcohols/aldehydes, intensity of the green fruity and bitter, also artichoke, herbs, tomato leaf, olive leaves and banana peels sensations.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 12","pages":"1367-1381"},"PeriodicalIF":1.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}