{"title":"Enhancing surface properties with coconut oil/cocoa butter/chia seed/titanium dioxide: Innovations in water-based coating technologies","authors":"Nazlıcan Öztürk, Fatma İrem Şahin, Nil Acaralı","doi":"10.1002/aocs.12903","DOIUrl":null,"url":null,"abstract":"<p>The aim of the present study was to enhance water-based coating technologies by using additives. The physical and chemical properties of a water-based organic coating were improved by incorporating coconut oil, cocoa butter, chia seed, and titanium dioxide into the coating. Cocoa butter was added to enhance the hydrophobic properties of the coating. To increase its corrosion-resistant properties, coconut oil was also included. Chia seed was added to observe its adhesion effect on the water-based coating. Titanium dioxide, obtained as waste from a pharmaceutical company, was supplied and added to the coating to both maintain color change and improve the durability of the coating. The additives were added to the water-based coating in different proportions ranging from 0% to 6% by weight. For the experiments in this study, Design Expert Box–Behnken method was applied by selecting three levels and four parameters. The optimal experiment was selected, and both the optimal coating and reference coating samples were analyzed. Based on the contact angle analysis results, the contact angle of the reference sample was measured to be 65.20°, while the optimum coating sample was measured to be 87.4°. According to the TG-DTA, the optimum coating exhibited a mass loss of 37.7. It was observed that both the reference and optimum coatings had a degradation temperature of ~408°C. As a result of this study and analyzes, it was observed that the coating exhibited enhanced hydrophobic properties, increased mechanical strength, improved adhesion properties, and preserved its combustion characteristics.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 3","pages":"533-545"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12903","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the present study was to enhance water-based coating technologies by using additives. The physical and chemical properties of a water-based organic coating were improved by incorporating coconut oil, cocoa butter, chia seed, and titanium dioxide into the coating. Cocoa butter was added to enhance the hydrophobic properties of the coating. To increase its corrosion-resistant properties, coconut oil was also included. Chia seed was added to observe its adhesion effect on the water-based coating. Titanium dioxide, obtained as waste from a pharmaceutical company, was supplied and added to the coating to both maintain color change and improve the durability of the coating. The additives were added to the water-based coating in different proportions ranging from 0% to 6% by weight. For the experiments in this study, Design Expert Box–Behnken method was applied by selecting three levels and four parameters. The optimal experiment was selected, and both the optimal coating and reference coating samples were analyzed. Based on the contact angle analysis results, the contact angle of the reference sample was measured to be 65.20°, while the optimum coating sample was measured to be 87.4°. According to the TG-DTA, the optimum coating exhibited a mass loss of 37.7. It was observed that both the reference and optimum coatings had a degradation temperature of ~408°C. As a result of this study and analyzes, it was observed that the coating exhibited enhanced hydrophobic properties, increased mechanical strength, improved adhesion properties, and preserved its combustion characteristics.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.