{"title":"Parametric Amplification in Depletion Layer Transduced Microelectromechanical Resonator","authors":"Satish K. Verma;Bhaskar Mitra","doi":"10.1109/JMEMS.2024.3447694","DOIUrl":"10.1109/JMEMS.2024.3447694","url":null,"abstract":"This paper introduces a method for signal amplification and enhancement of full width half maxima (FWHM) in a depletion layer-transduced flexural resonator using the parametric effect. The device can be used as a filter-amplifier, or as a low-noise readout method for sensors. Parametric excitation shows a significant drop in device impedance, from 334.2 k\u0000<inline-formula> <tex-math>$Omega $ </tex-math></inline-formula>\u0000 without a pump signal to 45.9 k\u0000<inline-formula> <tex-math>$Omega $ </tex-math></inline-formula>\u0000 with a 300 mV pump signal. In the absence of the pump signal, with an input power of −10 dBm, the resonator produces an output power of −44.87 dBm at ~400 kHz and a FWHM value of 23 Hz. However, when a 200 mV pump signal at \u0000<inline-formula> <tex-math>$2f_{0}$ </tex-math></inline-formula>\u0000 with \u0000<inline-formula> <tex-math>$pi $ </tex-math></inline-formula>\u0000/2 phase shift, is superimposed with the same input power, the resonator’s output power amplifies to −11.49 dBm, and the FWHM value substantially decreases to 10 Hz. This leads to a 33.58 dBm of amplification and 2.3x improvement in Q attributed to the parametric effect. A detailed analytical model of the transducer is presented. [2024-0061]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"668-676"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated Sensors to Experimentally Measure Microheater Uniformity: Geometry Implications in Meander-Based Structures","authors":"Maider Calderon-Gonzalez;David Cheyns;Rob Ameloot;Jan Genoe","doi":"10.1109/JMEMS.2024.3447880","DOIUrl":"10.1109/JMEMS.2024.3447880","url":null,"abstract":"Microheaters have evolved to become a key component of devices in a wide range of applications, many of which require a thermal profile with good uniformity. To this end, it is critical not only to select an appropriate device geometry but also to have reliable tools to assess the uniformity in the microscale. This paper presents a collection of novel sensors to experimentally extract the mean temperature in various regions of the micro-hotplate with high accuracy, offering an innovative alternative to other uniformity measurement tools that are often not available or not sufficiently precise. The studies are articulated around a series of meander-based microheaters, for which the temperature versus voltage profile, response time, power consumption and uniformity are studied. In this way, insight into the influence of different geometrical parameters (i.e. line arrangement, scaling, linewidth and line spacing) is provided. Finite Element Method simulations are performed based on certain assumptions and boundary conditions and exhibit strong concordance with our experimental data, thus we demonstrated that the sensors serve as a tool to validate the representativeness of a model.[2024-0110]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 6","pages":"736-746"},"PeriodicalIF":2.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengxin Li;Aojie Quan;Hemin Zhang;Chen Wang;Linlin Wang;Mustafa Mert Torunbalci;Yuan Wang;Michael Kraft
{"title":"On Extending Signal-to-Noise Ratio of Resonators for a MEMS Resonant Accelerometers Using Nonlinearity Compensation","authors":"Chengxin Li;Aojie Quan;Hemin Zhang;Chen Wang;Linlin Wang;Mustafa Mert Torunbalci;Yuan Wang;Michael Kraft","doi":"10.1109/JMEMS.2024.3443641","DOIUrl":"10.1109/JMEMS.2024.3443641","url":null,"abstract":"In this work, the relationship between nonlinear effects and the signal-to-noise ratio of a resonator is analyzed and the impact of reducing nonlinear effects of the resonator on the performance of a resonant accelerometer is investigated. A theoretical framework is formulated to evaluate the dynamic range of the double clamped-clamped resonator. A reduction of the mechanical nonlinearity is achieved through an external electrostatic force, resulting in an enhancement of the dynamic range from 93.8 dB to 132.6 dB. Experimental findings indicate the nonlinear coefficient is reduced to 2.2% compared to an approach without nonlinearity compensation. The nonlinearity compensation demonstrates a 12.8 dB improvement in the signal-to-noise ratio of the resonator, leading to a 5.5-fold increase in resolution of the accelerometer and an extension of the dynamic range by 15 dB. The proposed technique enables the performance of resonant sensors to be further optimized. [2024-0107]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"568-576"},"PeriodicalIF":2.5,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10651611","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of 32×32 2 D CMUT Arrays on a Borosilicate Glass Substrate With Silicon- Through-Wafer Interconnects Using Non- Aligned and Aligned Anodic Bonding","authors":"Muhammetgeldi Annayev;Ali Önder Biliroğlu;Erdem Şennik;Feysel Yalçın Yamaner;Ömer Oralkan","doi":"10.1109/JMEMS.2024.3440191","DOIUrl":"10.1109/JMEMS.2024.3440191","url":null,"abstract":"2D arrays are crucial for developing compact and efficient 3D ultrasound systems. Capacitive micromachined ultrasonic transducer (CMUT) arrays, providing convenient integration with supporting electronics, are advantageous for implementing such systems. Fabricating 2D CMUT arrays and integrated circuits (ICs) separately and then combining them in the packaging stage provides flexibility in design and integration. The integrated system can be used for beam-steering and electronic focusing in 3D space. Previously, fabrication processes were reported for implementing 2D CMUT arrays on glass substrates with copper through-glass-via (Cu-TGV) interconnects using anodic bonding and silicon through-glass-via (Si-TGV) interconnects using a sacrificial-release process. Both approaches had challenges, such as voids in Cu-vias, microcracks in laser-drilled glass, mechanical stress in CVD nitride layers, and low fill factor due to fabrication limitations. These challenges can be overcome by combining Si-TGV interconnects with an anodic bonding process. We developed a Si-TGV wafer with a backside glass layer to make it compatible with anodic bonding. We designed and fabricated \u0000<inline-formula> <tex-math>$32times 32~2$ </tex-math></inline-formula>\u0000D CMUT arrays with a single cell per element to increase the fill factor and to produce high pressure. We measured an output pressure as high as 4.75 MPa\u0000<inline-formula> <tex-math>$_{textbf {pp}}$ </tex-math></inline-formula>\u0000 at 1.8 MHz by focusing the array at 8 mm (F\u0000<inline-formula> <tex-math>$#1$ </tex-math></inline-formula>\u0000). Four arrays, tiled next to each other in a \u0000<inline-formula> <tex-math>$2times 2$ </tex-math></inline-formula>\u0000 grid, focusing at 15 mm produced up to 8.65 MPa\u0000<inline-formula> <tex-math>$_{textbf {pp}}$ </tex-math></inline-formula>\u0000 pressure at 1.8 MHz. We achieved 99.9% element yield measured in a single array.[2024-0078]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"586-595"},"PeriodicalIF":2.5,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanical Quality Factor Evaluation of Damping Film Materials for Polymer/PZT Composite MEMS Actuator","authors":"Xuchen Wang;Yukio Suzuki;Chung-Min Li;Shuji Tanaka","doi":"10.1109/JMEMS.2024.3436865","DOIUrl":"10.1109/JMEMS.2024.3436865","url":null,"abstract":"This paper reports the experimental estimation of the mechanical quality factor (\u0000<inline-formula> <tex-math>$Q_{m}$ </tex-math></inline-formula>\u0000) of polymer films, which can be used as damping materials for MEMS. Considering the application to MEMS devices, polymer/PZT composite actuators using two thick photoresists (TMMR-NA1000 and SU8) and PDMS were fabricated and the Q factors were evaluated in a vacuum environment. The comparison between the measured and simulated Q factor confirmed a \u0000<inline-formula> <tex-math>$Q_{m}$ </tex-math></inline-formula>\u0000 range of 14-18 for TMMR-NA1000, 13-20 for SU8, and 5-8 for PDMS, indicating the superior damping capability of PDMS. Additionally, it was also found that the PZT thin film used in this study exhibited \u0000<inline-formula> <tex-math>$Q_{m}$ </tex-math></inline-formula>\u0000 of 200-220 under the driving voltage of 2 Vpp with +1V DC offset. The evaluation approach developed for assessing \u0000<inline-formula> <tex-math>$Q_{m}$ </tex-math></inline-formula>\u0000 of polymer materials is straightforward, easily implementable, and has broad structure applicability, offering a promising tool for assessing a wide array of materials. [2024-0096]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"631-639"},"PeriodicalIF":2.5,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142216965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/JMEMS.2024.3422749","DOIUrl":"10.1109/JMEMS.2024.3422749","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"503-503"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10619996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianyi Zhang;Yen-Wei Chang;Omar Barrera;Naveed Ahmed;Jack Kramer;Ruochen Lu
{"title":"Acoustic and Electromagnetic Co-Modeling of Piezoelectric Devices at Millimeter Wave","authors":"Tianyi Zhang;Yen-Wei Chang;Omar Barrera;Naveed Ahmed;Jack Kramer;Ruochen Lu","doi":"10.1109/JMEMS.2024.3431576","DOIUrl":"10.1109/JMEMS.2024.3431576","url":null,"abstract":"This work reports the procedure for modeling piezoelectric acoustic resonators and filters at millimeter wave (mmWave). Different from conventional methods for lower frequency piezoelectric devices, we include both acoustic and electromagnetic (EM) effects, e.g., self-inductance, in both the circuit-level fitting and finite element analysis, toward higher accuracy at higher frequencies. To validate the method, thin-film lithium niobate (LiNbO3) first-order antisymmetric (A1) mode devices are used as the testbed, achieving great agreement for both the standalone resonators and a fifth-order ladder filter. Upon further development, the reported acoustic and EM co-modeling could guide the future design of compact piezoelectric devices at mmWave and beyond.[2024-0074]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"640-645"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Journal of Microelectromechanical Systems Publication Information","authors":"","doi":"10.1109/JMEMS.2024.3422734","DOIUrl":"10.1109/JMEMS.2024.3422734","url":null,"abstract":"","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 4","pages":"C2-C2"},"PeriodicalIF":2.5,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10619999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson
{"title":"Near 6-GHz Sezawa Mode Surface Acoustic Wave Resonators Using AlScN on SiC","authors":"Xingyu Du;Nishant Sharma;Zichen Tang;Chloe Leblanc;Deep Jariwala;Roy H. Olsson","doi":"10.1109/JMEMS.2024.3430984","DOIUrl":"10.1109/JMEMS.2024.3430984","url":null,"abstract":"Surface Acoustic Wave (SAW) devices featuring Aluminum Scandium Nitride (AlScN) on a 4H-Silicon Carbide (SiC) substrate, offer a unique blend of high sound velocity, low thermal resistance, substantial piezoelectric response, simplified fabrication, as well as suitability for high-temperature and harsh environment operation. This study presents high-frequency SAW resonators employing AlScN thin films on SiC substrates, utilizing the second SAW mode (referred to as the Sezawa mode). The resonators achieve remarkable performance, boasting a K\u0000<inline-formula> <tex-math>$^{mathrm {2}}$ </tex-math></inline-formula>\u0000 value of 5.5% at 4.7 GHz and a maximum Bode-Q (Q\u0000<inline-formula> <tex-math>$_{mathrm {max}}$ </tex-math></inline-formula>\u0000) of 911 at 4.3 GHz, outperforming previous AlScN SAW devices. Additionally, a SAW resonator with a \u0000<inline-formula> <tex-math>$0.96~mu $ </tex-math></inline-formula>\u0000m wavelength attains 5.9 GHz frequency with K\u0000<inline-formula> <tex-math>$^{mathrm {2}}$ </tex-math></inline-formula>\u0000 of 4.0% and Q\u0000<inline-formula> <tex-math>$_{mathrm {max}}$ </tex-math></inline-formula>\u0000 of 762. Our study underscores the potential of the AlScN on SiC platform for advanced radio-frequency applications. [2024-0075]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"577-585"},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MEMS-Compatible X-Ray Source","authors":"P. Urbański;T. Grzebyk","doi":"10.1109/JMEMS.2024.3426111","DOIUrl":"10.1109/JMEMS.2024.3426111","url":null,"abstract":"In this letter we present the first stand-alone X-ray source made in MEMS (micro-electro-mechanical system) technology, which is able to operate outside a vacuum chamber. We have overcome the existing problems with hermetic sealing, high vacuum stabilization and risk of electric short-circuits which have so far prevented the realization of such a device. The source is \u0000<inline-formula> <tex-math>$30times 16 times 7$ </tex-math></inline-formula>\u0000 mm3, operates up to 30 keV, with currents reaching few hundred microamperes. Due to the technological compatibility with other MEMS structures and possibility of adjusting its parameters, this source can be easily applied in different X-ray experiments performed in micro scale. [2024-0103]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 5","pages":"508-510"},"PeriodicalIF":2.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614716","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}