Journal of Oral Microbiology最新文献

筛选
英文 中文
Functional characteristics of membrane vesicles produced by Streptococcus mitis. 唇形链球菌膜泡的功能特点。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-23 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2557962
Airi Matsumoto, Yuichi Oogai, Haruka Kurashige, Tomoko Sumitomo, Atsushi Tabata, Masanobu Nakata
{"title":"<b>Functional characteristics of membrane vesicles produced by</b> <i><b>Streptococcus mitis</b></i>.","authors":"Airi Matsumoto, Yuichi Oogai, Haruka Kurashige, Tomoko Sumitomo, Atsushi Tabata, Masanobu Nakata","doi":"10.1080/20002297.2025.2557962","DOIUrl":"10.1080/20002297.2025.2557962","url":null,"abstract":"<p><strong>Objective: </strong>Mitis group streptococci (MGS) are the predominant oral bacteria that cause bacteremia and infective endocarditis. Although membrane vesicle (MV) secretion has been reported in <i>Streptococcus pneumoniae</i> among MGSs, comprehensive studies using various streptococcal species are limited. We aimed to determine whether MGS species produce MVs and to examine their biological functions.</p><p><strong>Materials and methods: </strong>MVs were isolated from MGS cultures using density gradient ultracentrifugation. The particle sizes of MVs were measured, and proteins in MVs were identified by liquid-chromatography tandem mass spectrometry analysis. Effects of MVs on host cells and oral pathogenic bacteria were investigated.</p><p><strong>Results: </strong>MV production was confirmed in <i>Streptococcus mitis</i> strains NCTC12261, Nm-65, and Nm-76, with particle diameters ranging from 100 to 120 nm. The MVs contained numerous cytoplasmic proteins. The MVs showed internalization into alveolar epithelial cells and induced the production of multiple cytokines, including TNF-<i>α</i>, IL-8, IL-6, IL-1β, and IL-10, in macrophages while suppressing phagocytic activity. In neutrophil-differentiated cells, MVs induced IL-8 but not TNF-<i>α</i> production. MVs from <i>S. pneumoniae</i> TIGR4 and <i>S. mitis</i> Nm-65 inhibited biofilm formation of <i>Aggregatibacter actinomycetemcomitans</i>.</p><p><strong>Conclusions: </strong>MVs play crucial roles in MGS survival strategies through immune modulation and interspecies competition, contributing to their pathogenicity and host-pathogen interactions.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2557962"},"PeriodicalIF":5.5,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145149590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbiome differences between trauma- and caries-derived periapical lesions using next-generation sequencing. 使用新一代测序分析创伤和龋齿引起的根尖周围病变之间的微生物组差异。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-23 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2560016
Jiyuan Zhan, Yinxue Huang, Xinhui Meng, Yiquan Wang, Jia Liang, Fengjiao Zhu, Rui She, Shanshan Huang, Lijun Huo
{"title":"Microbiome differences between trauma- and caries-derived periapical lesions using next-generation sequencing.","authors":"Jiyuan Zhan, Yinxue Huang, Xinhui Meng, Yiquan Wang, Jia Liang, Fengjiao Zhu, Rui She, Shanshan Huang, Lijun Huo","doi":"10.1080/20002297.2025.2560016","DOIUrl":"10.1080/20002297.2025.2560016","url":null,"abstract":"<p><strong>Background: </strong>While the microbiome of caries-derived periapical lesions has been extensively characterized, the microbial profile of trauma-derived periapical lesions remains poorly understood. This study aimed to characterize the apical microbiome of trauma-derived periapical lesions and identify taxonomic differences between trauma- and caries-derived periapical lesions.</p><p><strong>Methods: </strong>Twenty patients with periapical lesions were enrolled, comprising 10 trauma-derived cases (trauma group) and 10 caries-derived cases (caries group). Microbial samples were collected using sterile paper points inserted into the root canal exudate, followed by DNA extraction and Illumina sequencing of the hypervariable V3-V4 regions of the 16S rRNA gene. Bioinformatic analyses included <i>α</i>-diversity, <i>β</i>-diversity based on Bray-Curtis distance and differential abundance testing (LEfSe method with LDA score ≥ 2.0).</p><p><strong>Results: </strong>Sequencing revealed 36 bacterial phyla and 587 genera across all samples. Trauma group showed significantly greater relative abundance of <i>Campylobacter</i> (<i>P</i> = 0.002) compared to caries group, whereas <i>Prevotella</i> (<i>P</i> = 0.008), <i>Vibrio</i> (<i>P</i> = 0.041) and <i>Filifactor</i> (<i>P</i> = 0.006) exhibited reduced abundance. The core microbiota in the trauma group included <i>Phocaeicola</i>, <i>Porphyromonas</i> and <i>Pyramidobacter</i>, based on relative abundance. LEfSe analysis identified <i>Campylobacter</i> as a biomarker for the trauma group.</p><p><strong>Conclusions: </strong>Trauma-derived periapical lesions exhibited reduced microbial diversity compared to caries-derived periapical lesions, with <i>Campylobacter</i> identified as a potential pathognomonic taxon for trauma-derived periapical lesions.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2560016"},"PeriodicalIF":5.5,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145149547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluconazole tolerance and virulence adaptations of Candida albicans isolated from head and neck cancer patients. 头颈癌患者分离的白色念珠菌氟康唑耐受性和毒力适应性。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-23 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2559024
Phimchat Suwannaphong, Patcharin Thammasit, Artid Amsri, Waranyu Ueangphairot, Pooriwat Muangwong, Kittikun Kittidachanan, Imjai Chitapanarux, Jiraporn Kantapan, Nathupakorn Dechsupa, Sirida Youngchim
{"title":"Fluconazole tolerance and virulence adaptations of <i><b>Candida albicans</b></i> isolated from head and neck cancer patients.","authors":"Phimchat Suwannaphong, Patcharin Thammasit, Artid Amsri, Waranyu Ueangphairot, Pooriwat Muangwong, Kittikun Kittidachanan, Imjai Chitapanarux, Jiraporn Kantapan, Nathupakorn Dechsupa, Sirida Youngchim","doi":"10.1080/20002297.2025.2559024","DOIUrl":"10.1080/20002297.2025.2559024","url":null,"abstract":"<p><strong>Background: </strong><i>C</i> <i>andida albicans</i> is the predominant opportunistic pathogen causing oral candidiasis in immunocompromised head and neck cancer (HNC) patients. Fluconazole (FLC) is commonly used for treatment and prophylaxis; however, persistent infections remain a clinical challenge during cancer therapy. We hypothesized that <i>C. albicans</i> survival under FLC exposure may be driven by the development of tolerance or resistance, accompanied by altered virulence traits.</p><p><strong>Methods: </strong>In this study, we characterized FLC susceptibility and virulence profiles of clinical <i>C. albicans</i> isolates obtained from HNC patients.</p><p><strong>Results: </strong>Most isolates were susceptible to FLC, but two tolerant phenotypes, moderate (MT) and heavy tolerance (HT), were identified. FLC prophylaxis did not significantly affect tolerance prevalence or severity. Both tolerant isolates exhibited upregulation of key resistance genes, <i>ERG11</i>. Under FLC exposure, the MT isolate modestly increased expression of <i>ALS1</i> and <i>SAP6,</i> while downregulating other virulence genes, correlating with reduced adhesion and biofilm formation. Conversely, the HT isolate upregulated <i>ALS3</i>, <i>HWP1</i>, and <i>SAP6</i>, enhancing adhesion and sustaining biofilm integrity. Despite <i>SAP6</i> upregulation in both, host cell cytotoxicity was similar.</p><p><strong>Conclusion: </strong>These findings highlight adaptive mechanisms by which FLC-tolerant <i>C. albicans</i> retain pathogenicity under antifungal stress, posing potential challenges for clinical management in HNC patients.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2559024"},"PeriodicalIF":5.5,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12459159/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145149545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oral microbial signatures underlying recurrence via PI3K/AKT/mTOR pathway modulation in oral squamous cell carcinoma. PI3K/AKT/mTOR通路在口腔鳞状细胞癌复发中的作用
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-20 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2560020
Da-Woon Kwack, Zeba Praveen, Yeon-Hee Kim, Chong Woo Yoo, Jae Hee Ko, Suk Min Youn, Joo Yong Park, Jong-Ho Lee, Sung Weon Choi, Mi Kyung Kim
{"title":"Oral microbial signatures underlying recurrence via PI3K/AKT/mTOR pathway modulation in oral squamous cell carcinoma.","authors":"Da-Woon Kwack, Zeba Praveen, Yeon-Hee Kim, Chong Woo Yoo, Jae Hee Ko, Suk Min Youn, Joo Yong Park, Jong-Ho Lee, Sung Weon Choi, Mi Kyung Kim","doi":"10.1080/20002297.2025.2560020","DOIUrl":"10.1080/20002297.2025.2560020","url":null,"abstract":"<p><strong>Background: </strong>Oral squamous cell carcinoma (OSCC) often recurs locally, reducing survival. The oral microbiome may influence tumor recurrence, but its prognostic role is unclear. This study investigated oral microbiomes associated with OSCC recurrence and their prognostic merit.</p><p><strong>Materials and methods: </strong>Saliva samples were collected from 133 patients with OSCC. 16S rRNA gene sequencing was performed, and microbial signatures were predicted via XGBoost. Functional metagenomic prediction was conducted using PICRUSt2.</p><p><strong>Results: </strong>XGBoost identified <i>Eubacterium</i>, <i>Lactobacillus</i>, <i>Kingella</i>, <i>Paludibacter</i>, <i>Parvimonas</i>, <i>Staphylococcus</i>, and <i>Veillonella</i> as predictive for OSCC recurrence. <i>Eubacterium</i> and <i>Lactobacillus</i> were significantly enriched in recurrent disease and associated with poor survival. <i>Staphylococcus</i> and <i>Veillonella</i> were abundant in non-recurrent disease, correlating with a favorable prognosis. The microbiome-based model achieved superior predictive performance (AUC = 0.741) compared with the clinical <i>N</i>-stage model (AUC = 0.66). <i>Eubacterium</i> and <i>Lactobacillus</i> showed positive correlations with key genes, such as protein kinase B (AKT), fibroblast growth factor receptor 1 and guanine nucleotide-binding protein G subunit beta-2, within the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. In contrast, <i>Veillonell</i>a was negatively correlated with these genes.</p><p><strong>Conclusions: </strong>Oral saliva microbiome profiling reveals distinct microbial patterns associated with OSCC recurrence. Our correlation-based functional predictions indicated that the enrichment of <i>Eubacterium</i> and <i>Lactobacillus</i> along with a lower abundance of <i>Veillonella</i> may influence recurrence through oncogenic PI3K/AKT/mTOR, underscoring the prognostic potential of saliva-based microbial biomarkers.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2560020"},"PeriodicalIF":5.5,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145130986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypochlorous acid solution serves as a potential anti-biofilm therapy for periodontitis via targeting quorum sensing of periodontal pathogens. 次氯酸溶液作为一种潜在的抗牙周炎生物膜疗法,通过靶向牙周病原体的群体感应。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-12 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2557959
Xuerong Lv, Xiang Han, Yiyang Yang, Yuzhuo Ma, Yue Wang, Kewei Zhang, Feiyang Wang, Chen Yang, Ke Yan, Xiaoqian Wang
{"title":"Hypochlorous acid solution serves as a potential anti-biofilm therapy for periodontitis <i>via</i> targeting quorum sensing of periodontal pathogens.","authors":"Xuerong Lv, Xiang Han, Yiyang Yang, Yuzhuo Ma, Yue Wang, Kewei Zhang, Feiyang Wang, Chen Yang, Ke Yan, Xiaoqian Wang","doi":"10.1080/20002297.2025.2557959","DOIUrl":"10.1080/20002297.2025.2557959","url":null,"abstract":"<p><strong>Backgroud: </strong>Hypochlorous acid solution (HAS), a novel bio-friendly antimicrobial, has garnered attention for its antimicrobial activity, while less is known about its antibiofilm effects on periodontal pathogenic biofilms and the underlying mechanisms.</p><p><strong>Objective: </strong>This study aimed to explore HAS's antibiofilm effect on periodontal pathogenic biofilms and the potential mechanisms.</p><p><strong>Design: </strong><i>In vitro</i>, the minimum inhibitory concentration (MIC) of HAS was determined by microdilution method. Alterations in biofilms were analysed using crystal violet (CV) staining, MTT assay and microscopic imaging techniques. The biocompatibility of HAS was assessed <i>via</i> CCK-8 and scratch assays. The regulatory mechanism of HAS within biofilms were investigated using bioluminescence assays, reactive oxygen species (ROS) detection and RT‒qPCR. <i>In vivo</i>, rat periodontitis models were established. Imaging and histological techniques were employed to evaluate the inhibitory effects of HAS on alveolar bone resorption and inflammatory cytokines.</p><p><strong>Results: </strong>Compared to 0.25% NaClO solution, it exhibited better biocompatibility. HAS downregulated biofilmvirulence factors and upregulated oxidative stress response-related genes, suggesting that inducing ROS production is a crucial mechanism of HAS in biofilm inhibition. Furthermore, HAS significantly inhibited autoinducer-2 (AI-2) activity and downregulated the QS-related genes. <i>In vivo</i>, HAS significantly reduced bone resorption and periodontal inflammation.</p><p><strong>Conclusions: </strong>Given HAS's accessibility, excellent biocompatibility, and outstanding antibiofilm properties, it may offer a safe antibiofilm approach for clinical periodontal therapy, effectively removing biofilms in areas inaccessible to instrumental therapy and persistent biofilms.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2557959"},"PeriodicalIF":5.5,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12434847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145075392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal analysis of oral microbiome changes during the neonatal period in full-term and preterm newborns. 足月和早产儿新生儿期口腔微生物组变化的纵向分析。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-06 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2555575
Taeyang Lee, Hyun-Yi Kim, Jung Ho Han, Jeong Eun Shin, Na-Young Song, Won-Yoon Chung, Chung-Min Kang
{"title":"Longitudinal analysis of oral microbiome changes during the neonatal period in full-term and preterm newborns.","authors":"Taeyang Lee, Hyun-Yi Kim, Jung Ho Han, Jeong Eun Shin, Na-Young Song, Won-Yoon Chung, Chung-Min Kang","doi":"10.1080/20002297.2025.2555575","DOIUrl":"10.1080/20002297.2025.2555575","url":null,"abstract":"<p><strong>Background: </strong>The neonatal period is critical for oral microbiome establishment, but temporal patterns in preterm newborns remain unclear. This study examined longitudinal microbiome changes in full-term and preterm newborns and assessed perinatal and clinical influences.</p><p><strong>Methods: </strong>Oral swabs were collected from 98 newborns (23 full-term, 75 preterm). Samples were obtained at birth and Day 2 for full-term, and at birth, Day 7, and Day 28 for preterm newborns. 16S rRNA gene sequencing was used to analyze microbial diversity, taxonomic shifts, and virulence-related genes.</p><p><strong>Results: </strong>Preterm newborns showed persistently lower α-diversity and delayed succession compared with full-term newborns. Full-term infants transitioned rapidly from Proteobacteria-dominant to Firmicutes- and Actinobacteria-rich communities, while preterm infants maintained Proteobacteria longer. Diversity in preterm newborns was significantly affected by gestational age, birthweight, delivery mode, feeding type, and β-lactam exposure. Breastfeeding supported more stable diversity, whereas cesarean delivery and formula feeding reduced diversity. Functional profiling revealed greater abundance of virulence-associated genes in preterm newborns, suggesting differences in early host-microbe interactions. .</p><p><strong>Conclusions: </strong>Preterm newborns exhibit delayed oral microbiome development, influenced by multiple modifiable factors. Supportive strategies, such as breastfeeding and prudent antibiotic use, may help foster microbial stability and potentially reduce infection risk in this vulnerable population.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2555575"},"PeriodicalIF":5.5,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145030051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postmenopausal osteoporosis increases periodontal inflammation and the pathogenicity of the oral microbiota in a rat model. 绝经后骨质疏松症增加牙周炎症和口腔微生物群在大鼠模型中的致病性。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-09-01 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2554381
Miao Lu, Yanan Zhang, Yang Zhang, Xulei Yuan, Tingwei Zhang, Jinlin Song
{"title":"Postmenopausal osteoporosis increases periodontal inflammation and the pathogenicity of the oral microbiota in a rat model.","authors":"Miao Lu, Yanan Zhang, Yang Zhang, Xulei Yuan, Tingwei Zhang, Jinlin Song","doi":"10.1080/20002297.2025.2554381","DOIUrl":"10.1080/20002297.2025.2554381","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to explore the mechanisms of the detrimental effects of postmenopausal osteoporosis (PMO) on periodontitis.</p><p><strong>Methods: </strong>An ovariectomized (OVX) rat model was established to investigate the effects of PMO on alveolar bone homeostasis and periodontal inflammation. Chlorhexidine digluconate (CHX) was administered to rats with OVX - periodontitis to ascertain the involvement of the oral microbiota in the influence of PMO on periodontitis. Finally, oral microbiota transplantation was conducted to examine the oral microbiota's pathogenicity.</p><p><strong>Results: </strong>OVX rats exhibited increased periodontal trabecular bone resorption and inflammation. In addition, depletion of the oral microbiota by CHX decreased the alveolar bone destruction in OVX - periodontitis rats. Furthermore, 16S rRNA gene sequencing demonstrated that PMO changes the composition of the oral microbiota. Finally, oral microbiota transplantation indicated that PMO enhanced the oral microbiota's pathogenicity.</p><p><strong>Conclusion: </strong>PMO detrimentally affects periodontitis by increasing periodontal inflammation and the pathogenicity of the oral microbiota, which provides a mechanistic understanding of how PMO affects periodontitis and highlights the necessity of more regular monitoring of the oral microbiota in PMO patients.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2554381"},"PeriodicalIF":5.5,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145000698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional and taxonomic dysbiosis of the supragingival plaque metagenome in Behçet's disease. behaperet病龈上斑块宏基因组的功能和分类失调。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-08-29 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2552165
Thanyarat Sapthanakorn, Pitipol Choopong, Wasawat Sermsripong, Chatkoew Boriboonhirunsarn, Chompak Khamwachirapitak, Annop Krasaesin, Pimchanok Sutthiboonyaphan, Nisachon Siripaiboonpong, Rangsini Mahanonda, Paswach Wiriyakijja, George Pelekos, Thantrira Porntaveetus, Supreda Suphanantachat Srithanyarat
{"title":"Functional and taxonomic dysbiosis of the supragingival plaque metagenome in Behçet's disease.","authors":"Thanyarat Sapthanakorn, Pitipol Choopong, Wasawat Sermsripong, Chatkoew Boriboonhirunsarn, Chompak Khamwachirapitak, Annop Krasaesin, Pimchanok Sutthiboonyaphan, Nisachon Siripaiboonpong, Rangsini Mahanonda, Paswach Wiriyakijja, George Pelekos, Thantrira Porntaveetus, Supreda Suphanantachat Srithanyarat","doi":"10.1080/20002297.2025.2552165","DOIUrl":"10.1080/20002297.2025.2552165","url":null,"abstract":"<p><strong>Background: </strong>Behçet's Disease (BD), a complex autoinflammatory disorder, is increasingly linked to microbial dysbiosis, yet the specific microbial signatures and their functional consequences remain incompletely characterized. Elucidating these alterations is crucial for understanding BD pathogenesis.</p><p><strong>Objective: </strong>To identify distinct microbial community structures and functional potentials in supragingival plaque microbiomes of BD patients versus healthy controls (HC) using high-resolution shotgun metagenomic sequencing.</p><p><strong>Methods: </strong>Supragingival plaque from 18 BD patients and 22 HCs was subjected to shotgun metagenomics. Analyses included alpha/beta diversity, taxonomic composition, and MetaCyc pathway abundance, with statistical comparisons.</p><p><strong>Results: </strong>Despite similar age and clinical attachment levels, BD patients exhibited significantly increased alpha diversity and distinct beta diversity compared to HCs. Differential abundance analysis revealed an enrichment of anaerobic and opportunistic taxa in BD (implicating 4 phyla and 28 genera), alongside 19 significantly altered MetaCyc pathways, indicating substantial functional reprogramming within the BD oral microbiome.</p><p><strong>Conclusion: </strong>This high-resolution metagenomic analysis reveals profound oral microbiome dysbiosis in Behçet's Disease, characterized by altered diversity, a distinct taxonomic signature enriched with pathobionts, and significant functional shifts. These comprehensive microbial alterations are implicated in contributing to the local and systemic inflammatory processes driving BD pathogenesis, offering potential avenues for diagnostic biomarkers and targeted therapies.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2552165"},"PeriodicalIF":5.5,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404063/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144992603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytokine release and NLRP3 inflammasome activation induced by low-abundance oral bacterial biofilms. 低丰度口腔细菌生物膜诱导细胞因子释放和NLRP3炎性体活化。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-08-27 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2552167
Maribasappa Karched, Radhika Guleri Bhardwaj, Manal Abu Al-Melh, Muawia Abdalla Qudeimat
{"title":"Cytokine release and NLRP3 inflammasome activation induced by low-abundance oral bacterial biofilms.","authors":"Maribasappa Karched, Radhika Guleri Bhardwaj, Manal Abu Al-Melh, Muawia Abdalla Qudeimat","doi":"10.1080/20002297.2025.2552167","DOIUrl":"10.1080/20002297.2025.2552167","url":null,"abstract":"<p><strong>Background: </strong>Low-abundance bacterial (LAB) species, despite their low prevalence, may contribute to oral inflammatory diseases by triggering host immune responses. The NLRP3 inflammasome plays a key role in inflammation, but its activation by LAB species remains unclear.</p><p><strong>Aim: </strong>This study examined whether selected LAB species and their biofilm-secreted components induce cytokine production and inflammasome activation in human peripheral blood mononuclear cells (PBMCs).</p><p><strong>Methods: </strong>Biofilms of selected LAB species were established, and supernatants were collected. PBMCs were stimulated with biofilms or supernatants, and cytokine levels were quantified using ELISA. The expression of NLRP3 and Caspase-1 genes was analyzed through real-time PCR.</p><p><strong>Results: </strong>Biofilms induced significantly higher levels of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-18) compared to supernatants, with C. hominis, N. flavescens, and D. pneumosintes being the most potent inducers. Biofilms also led to a marked increase in NLRP3 expression, while supernatants primarily activated Caspase-1 expression, indicating distinct inflammasome activation pathways.</p><p><strong>Conclusions: </strong>These findings highlight the immunostimulatory potential of LAB species, particularly their ability to activate NLRP3 and drive inflammation. The differential activation of NLRP3/Caspase-1 by biofilms and supernatants suggests distinct pathogenic mechanisms. Targeting such mechanisms/pathways could offer new therapeutic strategies to mitigate inflammation linked to oral infections.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2552167"},"PeriodicalIF":5.5,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12395623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative pilot study of three commercial kits for bacterial DNA extraction from human subgingival biofilm samples collected with a single paper point. 用单纸点提取龈下生物膜样品中细菌DNA的三种商用试剂盒的比较试验研究。
IF 5.5 2区 医学
Journal of Oral Microbiology Pub Date : 2025-08-21 eCollection Date: 2025-01-01 DOI: 10.1080/20002297.2025.2549035
Janine Wäge-Recchioni, Renke Perduns, Kirstin Vach, Angela Beckedorf, Joachim Volk, Nadine Schlueter, Ingmar Staufenbiel
{"title":"Comparative pilot study of three commercial kits for bacterial DNA extraction from human subgingival biofilm samples collected with a single paper point.","authors":"Janine Wäge-Recchioni, Renke Perduns, Kirstin Vach, Angela Beckedorf, Joachim Volk, Nadine Schlueter, Ingmar Staufenbiel","doi":"10.1080/20002297.2025.2549035","DOIUrl":"10.1080/20002297.2025.2549035","url":null,"abstract":"<p><strong>Objective: </strong>In periodontal research, subgingival biofilm samples are typically collected using sterile paper points and pooled for molecular analyses. Streamlining this process by using a single paper point for molecular analysis could simplify sample collection and allow additional paper points to be used for other investigations. This pilot study evaluated the performance of three commercial DNA extraction kits for analysing small sample volumes (<10 µL).</p><p><strong>Methods: </strong>Samples were collected from six participants, each contributing 18 paper points from both healthy and periodontitis-affected sites. Bacterial and human DNA yields were quantified using fluorometric measurements combined with qPCR, employing universal 16S primers for bacterial DNA and human-specific GAPDH primers.</p><p><strong>Results: </strong>Among the tested kits, the DNeasy Blood and Tissue Kit demonstrated the highest efficiency, yielding significantly more total dsDNA in samples from healthy sites compared to both other kits and in samples from periodontitis-affected sites compared to one kit. Bacterial DNA yields were also significantly higher with the DNeasy Kit compared to one of the other kits in both health conditions.</p><p><strong>Conclusion: </strong>These results suggest that one paper point is sufficient to extract DNA for subsequent bacterial analyses and that the DNeasy Blood and Tissue Kit appears to be the most efficient among the three tested kits.</p>","PeriodicalId":16598,"journal":{"name":"Journal of Oral Microbiology","volume":"17 1","pages":"2549035"},"PeriodicalIF":5.5,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144957935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信