William C Vogt, Haiou Shen, Ge Wang, Christopher G Rylander
{"title":"PARAMETRIC STUDY OF TISSUE OPTICAL CLEARING BY LOCALIZED MECHANICAL COMPRESSION USING COMBINED FINITE ELEMENT AND MONTE CARLO SIMULATION.","authors":"William C Vogt, Haiou Shen, Ge Wang, Christopher G Rylander","doi":"10.1142/S179354581000099X","DOIUrl":"https://doi.org/10.1142/S179354581000099X","url":null,"abstract":"<p><p>Tissue Optical Clearing Devices (TOCDs) have been shown to increase light transmission through mechanically compressed regions of naturally turbid biological tissues. We hypothesize that zones of high compressive strain induced by TOCD pins produce localized water displacement and reversible changes in tissue optical properties. In this paper, we demonstrate a novel combined mechanical finite element model and optical Monte Carlo model which simulates TOCD pin compression of an ex vivo porcine skin sample and modified spatial photon fluence distributions within the tissue. Results of this simulation qualitatively suggest that light transmission through the skin can be significantly affected by changes in compressed tissue geometry as well as concurrent changes in tissue optical properties. The development of a comprehensive multi-domain model of TOCD application to tissues such as skin could ultimately be used as a framework for optimizing future design of TOCDs.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"3 3","pages":"203-211"},"PeriodicalIF":2.5,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S179354581000099X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29585362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoacoustic generation of focused quasi-unipolar pressure pulses.","authors":"Konstantin Maslov, Hao F Zhang, Lihong V Wang","doi":"10.1142/S1793545810001118","DOIUrl":"https://doi.org/10.1142/S1793545810001118","url":null,"abstract":"<p><p>The photoacoustic effect was employed to generate short-duration quasi-unipolar acoustic pressure pulses in both planar and spherically focused geometries. In the focal region, the temporal profile of a pressure pulse can be approximated by the first derivative of the temporal profile near the front transducer surface, with a time averaged value equal to zero. This approximation agreed with experimental results acquired from photoacoustic transducers with both rigid and free boundaries. For a free boundary, the acoustic pressure in the focal region is equal to the sum of a positive pressure that follows the spatial profile of the optical energy deposition in the medium and a negative pressure that follows the temporal profile of the laser pulse.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"3 4","pages":"247-253"},"PeriodicalIF":2.5,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545810001118","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29530979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Narendran Sudheendran, Mohamed Mohamed, Mohamad G Ghosn, Valery V Tuchin, Kirill V Larin
{"title":"ASSESSMENT OF TISSUE OPTICAL CLEARING AS A FUNCTION OF GLUCOSE CONCENTRATION USING OPTICAL COHERENCE TOMOGRAPHY.","authors":"Narendran Sudheendran, Mohamed Mohamed, Mohamad G Ghosn, Valery V Tuchin, Kirill V Larin","doi":"10.1142/S1793545810001039","DOIUrl":"https://doi.org/10.1142/S1793545810001039","url":null,"abstract":"<p><p>One of the major challenges in imaging biological tissues using optical techniques, such as optical coherence tomography (OCT), is the lack of light penetration due to highly turbid structures within the tissue. Optical clearing techniques enable the biological samples to be more optically homogeneous, allowing for deeper penetration of light into the tissue. This study investigates the effect of optical clearing utilizing various concentrations of glucose solution (10%, 30%, and 50%) on porcine skin. A gold-plated mirror was imaged beneath the tissue and percentage clearing was determined by monitoring the change in reflected light intensity from the mirror over time. The ratio of percentage clearing per tissue thickness for 10%, 30% and 50% glucose was determined to be 4.7 ± 1.6% mm(-1) (n = 6), 10.6 ± 2.0% mm(-1) (n = 7) and 21.8 ± 2.2% mm(-1) (n = 5), respectively. It was concluded that while higher glucose concentration has the highest optical clearing effect, a suitable concentration should be chosen for the purpose of clearing, considering the osmotic stress on the tissue sample.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"3 3","pages":"169-176"},"PeriodicalIF":2.5,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545810001039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30259050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
He N Xu, Baohua Wu, Shoko Nioka, Britton Chance, Lin Z Li
{"title":"QUANTITATIVE REDOX SCANNING OF TISSUE SAMPLES USING A CALIBRATION PROCEDURE.","authors":"He N Xu, Baohua Wu, Shoko Nioka, Britton Chance, Lin Z Li","doi":"10.1142/S1793545809000681","DOIUrl":"10.1142/S1793545809000681","url":null,"abstract":"The fluorescence properties of reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavoproteins (Fp) including flavin adenine dinucleotide (FAD) in the respiratory chain are sensitive indicators of intracellular metabolic states and have been applied to the studies of mitochondrial function with energy-linked processes. The redox scanner, a three-dimensional (3D) low temperature imager previously developed by Chance et al., measures the in vivo metabolic properties of tissue samples by acquiring fluorescence images of NADH and Fp. The redox ratios, i.e. Fp/(Fp+NADH) and NADH/(Fp+NADH), provided a sensitive index of the mitochondrial redox state and were determined based on relative signal intensity ratios. Here we report the further development of the redox scanning technique by using a calibration method to quantify the nominal concentration of the fluorophores in tissues. The redox scanner exhibited very good linear response in the range of NADH concentration between 165-1318μM and Fp between 90-720 μM using snap-frozen solution standards. Tissue samples such as human tumor mouse xenografts and various mouse organs were redox-scanned together with adjacent NADH and Fp standards of known concentration at liquid nitrogen temperature. The nominal NADH and Fp concentrations as well as the redox ratios in the tissue samples were quantified by normalizing the tissue NADH and Fp fluorescence signal to that of the snap-frozen solution standards. This calibration procedure allows comparing redox images obtained at different time, independent of instrument settings. The quantitative multi-slice redox images revealed heterogeneity in mitochondrial redox state in the tissues.","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 4","pages":"375-385"},"PeriodicalIF":2.5,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000681","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37449359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Z Li, He N Xu, Mahsa Ranji, Shoko Nioka, Britton Chance
{"title":"MITOCHONDRIAL REDOX IMAGING FOR CANCER DIAGNOSTIC AND THERAPEUTIC STUDIES.","authors":"Lin Z Li, He N Xu, Mahsa Ranji, Shoko Nioka, Britton Chance","doi":"10.1142/S1793545809000735","DOIUrl":"10.1142/S1793545809000735","url":null,"abstract":"<p><p>Mitochondrial redox states provide important information about energy-linked biological processes and signaling events in tissues for various disease phenotypes including cancer. The redox scanning method developed at the Chance laboratory about 30 years ago has allowed 3D high-resolution (~ 50 × 50 × 10 <i>μ</i>m<sup>3</sup>) imaging of mitochondrial redox state in tissue on the basis of the fluorescence of NADH (reduced nicotinamide adenine dinucleotide) and Fp (oxidized flavoproteins including flavin adenine dinucleotide, i.e., FAD). In this review, we illustrate its basic principles, recent technical developments, and biomedical applications to cancer diagnostic and therapeutic studies in small animal models. Recently developed calibration procedures for the redox imaging using reference standards allow quantification of nominal NADH and Fp concentrations, and the concentration-based redox ratios, e.g., Fp/(Fp+NADH) and NADH/(Fp+NADH) in tissues. This calibration facilitates the comparison of redox imaging results acquired for different metabolic states at different times and/or with different instrumental settings. A redox imager using a CCD detector has been developed to acquire 3D images faster and with a higher in-plane resolution down to 10 <i>μ</i>m. <i>Ex vivo</i> imaging and <i>in vivo</i> imaging of tissue mitochondrial redox status have been demonstrated with the CCD imager. Applications of tissue redox imaging in small animal cancer models include metabolic imaging of glioma and myc-induced mouse mammary tumors, predicting the metastatic potentials of human melanoma and breast cancer mouse xenografts, differentiating precancerous and normal tissues, and monitoring the tumor treatment response to photodynamic therapy. Possible future directions for the development of redox imaging are also discussed.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 4","pages":"325-341"},"PeriodicalIF":2.5,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442014/pdf/nihms687594.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33338838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robabeh Rezaeipoor, Renu John, Steven G Adie, Eric J Chaney, Marina Marjanovic, Amy L Oldenburg, Stephanie A Rinne, Stephen A Boppart
{"title":"Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING.","authors":"Robabeh Rezaeipoor, Renu John, Steven G Adie, Eric J Chaney, Marina Marjanovic, Amy L Oldenburg, Stephanie A Rinne, Stephen A Boppart","doi":"10.1142/S1793545809000693","DOIUrl":"https://doi.org/10.1142/S1793545809000693","url":null,"abstract":"<p><p>In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 4","pages":"387-396"},"PeriodicalIF":2.5,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29915736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Miloš Todorović, Shuliang Jiao, George Stoica, Lihong V Wang
{"title":"PRELIMINARY STUDY ON SKIN CANCER DETECTION IN SENCAR MICE USING MUELLER OPTICAL COHERENCE TOMOGRAPHY.","authors":"Miloš Todorović, Shuliang Jiao, George Stoica, Lihong V Wang","doi":"10.1142/s1793545809000577","DOIUrl":"https://doi.org/10.1142/s1793545809000577","url":null,"abstract":"<p><p>We report on the use of a fiber-based Mueller-matrix optical coherence tomography (OCT) system with continuous source-polarization modulation for <i>in vivo</i> imaging of early stages of skin cancer in SENCAR mice. A homemade hand-held probe with integrated optical scanning and beam delivering optics was coupled in the sample arm. The OCT images show the morphological changes in skin resulting from pre-cancerous papilloma formations that are consistent with histology, thus demonstrating the system's potential for early skin cancer detection.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 3","pages":"289-294"},"PeriodicalIF":2.5,"publicationDate":"2009-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1793545809000577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38964189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kirill V Larin, Irina V Larina, Michael Liebling, Mary E Dickinson
{"title":"Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography.","authors":"Kirill V Larin, Irina V Larina, Michael Liebling, Mary E Dickinson","doi":"10.1142/S1793545809000619","DOIUrl":"https://doi.org/10.1142/S1793545809000619","url":null,"abstract":"<p><p>Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 3","pages":"253-259"},"PeriodicalIF":2.5,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29082649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adam M Larson, Anthony Lee, Po-Feng Lee, Kayla J Bayless, Alvin T Yeh
{"title":"ULTRASHORT PULSE MULTISPECTRAL NONLINEAR OPTICAL MICROSCOPY.","authors":"Adam M Larson, Anthony Lee, Po-Feng Lee, Kayla J Bayless, Alvin T Yeh","doi":"10.1142/S1793545809000292","DOIUrl":"https://doi.org/10.1142/S1793545809000292","url":null,"abstract":"<p><p>Ultrashort pulse, multispectral nonlinear optical microscopy (NLOM) is developed and used to image, simultaneously, a mixed population of cells expressing different fluorescent protein mutants in a 3D tissue model of angiogenesis. Broadband, sub-10-fs pulses are used to excite multiple fluorescent proteins and generate second harmonic in collagen simultaneously. A 16-channel multispectral detector is used to delineate the multiple nonlinear optical signals, pixel by pixel, in NLOM. The ability to image multiple fluorescent protein mutants and collagen, simultaneously, enables serial measurements of cell-cell and cell-matrix interactions in our 3D tissue model and characterization of fundamental processes in angiogenic morphogenesis.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 1","pages":"27-35"},"PeriodicalIF":2.5,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000292","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28496282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Li, Hao F Zhang, Roger J Zemp, Konstantin Maslov, Lihong Wang
{"title":"Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy.","authors":"Li Li, Hao F Zhang, Roger J Zemp, Konstantin Maslov, Lihong Wang","doi":"10.1142/S1793545808000212","DOIUrl":"https://doi.org/10.1142/S1793545808000212","url":null,"abstract":"<p><p>Photoacoustic molecular imaging, combined with the reporter-gene technique, can provide a valuable tool for cancer research. The expression of the lacZ reporter gene can be imaged using photoacoustic imaging following the injection of X-gal, a colorimetric assay for the lacZ-encoded enzyme β-galactosidase. Dual-wavelength photoacoustic microscopy was used to non-invasively image the detailed morphology of a lacZ-marked 9L gliosarcoma and its surrounding microvasculature simultaneously in vivo, with a superior resolution on the order of 10 μm. Tumor-feeding vessels were found, and the expression level of lacZ in tumor was estimated. With future development of new absorption-enhancing reporter-gene systems, we anticipate this strategy can lead to a better understanding of the role of tumor metabolism in cancer initiation, progression, and metastasis, and in its response to therapy.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"1 2","pages":"207-215"},"PeriodicalIF":2.5,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545808000212","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28535715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}