Robabeh Rezaeipoor, Renu John, Steven G Adie, Eric J Chaney, Marina Marjanovic, Amy L Oldenburg, Stephanie A Rinne, Stephen A Boppart
{"title":"磁性纳米颗粒定向抗体偶联增强分子靶向。","authors":"Robabeh Rezaeipoor, Renu John, Steven G Adie, Eric J Chaney, Marina Marjanovic, Amy L Oldenburg, Stephanie A Rinne, Stephen A Boppart","doi":"10.1142/S1793545809000693","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 4","pages":"387-396"},"PeriodicalIF":2.3000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000693","citationCount":"19","resultStr":"{\"title\":\"Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING.\",\"authors\":\"Robabeh Rezaeipoor, Renu John, Steven G Adie, Eric J Chaney, Marina Marjanovic, Amy L Oldenburg, Stephanie A Rinne, Stephen A Boppart\",\"doi\":\"10.1142/S1793545809000693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression.</p>\",\"PeriodicalId\":16248,\"journal\":{\"name\":\"Journal of Innovative Optical Health Sciences\",\"volume\":\"2 4\",\"pages\":\"387-396\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793545809000693\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Optical Health Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793545809000693\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545809000693","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING.
In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression.
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.