Li Ma, Qi Zhong, Yezi Wang, Xiaoquan Yang, Qian Du
{"title":"A 3D semantic segmentation network for accurate neuronal soma segmentation","authors":"Li Ma, Qi Zhong, Yezi Wang, Xiaoquan Yang, Qian Du","doi":"10.1142/s1793545824500184","DOIUrl":"https://doi.org/10.1142/s1793545824500184","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Jin, Yuting Fu, Sisi Ge, Han Sun, K. Pang, Xunbin Wei
{"title":"In vivo fluorescence flow cytometry reveals that the nanoparticle tumor vaccine OVA@HA-PEI effectively clears circulating tumor cells","authors":"Wei Jin, Yuting Fu, Sisi Ge, Han Sun, K. Pang, Xunbin Wei","doi":"10.1142/s1793545824500172","DOIUrl":"https://doi.org/10.1142/s1793545824500172","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqing Zhao, Guogang Cao, Jiangnan He, Cuixia Dai
{"title":"Multi-class classification of pathological myopia based on fundus photography","authors":"Jiaqing Zhao, Guogang Cao, Jiangnan He, Cuixia Dai","doi":"10.1142/s1793545824500160","DOIUrl":"https://doi.org/10.1142/s1793545824500160","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141821029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent Advances in Near-infrared Photobiomodulation for the Intervention of Acquired Brain Injury","authors":"Yujing Huang, Yujing Zhang, Chen Yang, Mengze Xu, Zhen Yuan","doi":"10.1142/s1793545824300052","DOIUrl":"https://doi.org/10.1142/s1793545824300052","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141823611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalized deep neural network approach for improving resolution of fluorescence microscopy images","authors":"Zichen Jin, Qing He, Yang Liu, Kaige Wang","doi":"10.1142/s1793545824500111","DOIUrl":"https://doi.org/10.1142/s1793545824500111","url":null,"abstract":"Deep learning is capable of greatly promoting the progress of super-resolution imaging technology in terms of imaging and reconstruction speed, imaging resolution, and imaging flux. This paper proposes a deep neural network based on a generative adversarial network (GAN). The generator employs a U-Net-based network, which integrates DenseNet for the downsampling component. The proposed method has excellent properties, for example, the network model is trained with several different datasets of biological structures; the trained model can improve the imaging resolution of different microscopy imaging modalities such as confocal imaging and wide-field imaging; and the model demonstrates a generalized ability to improve the resolution of different biological structures even out of the datasets. In addition, experimental results showed that the method improved the resolution of caveolin-coated pits (CCPs) structures from 264[Formula: see text]nm to 138[Formula: see text]nm, a 1.91-fold increase, and nearly doubled the resolution of DNA molecules imaged while being transported through microfluidic channels.","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141835790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei
{"title":"Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network","authors":"Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei","doi":"10.1142/s1793545824500093","DOIUrl":"https://doi.org/10.1142/s1793545824500093","url":null,"abstract":"<p><i>In-vivo</i> flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment, which renders it a valuable tool for both scientific research and clinical applications. However, the conventional approach for improving classification accuracy often involves labeling cells with fluorescence, which can lead to potential phototoxicity. This study proposes a label-free <i>in-vivo</i> flow cytometry technique, called dynamic YOLOv4 (D-YOLOv4), which improves classification accuracy by integrating absorption intensity fluctuation modulation (AIFM) into YOLOv4 to demodulate the temporal features of moving red blood cells (RBCs) and platelets. Using zebrafish as an experimental model, the D-YOLOv4 method achieved average precisions (APs) of 0.90 for RBCs and 0.64 for thrombocytes (similar to platelets in mammals), resulting in an overall AP of 0.77. These scores notably surpass those attained by alternative network models, thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free <i>in-vivo</i> flow cytometry, which holds promise for diverse <i>in-vivo</i> cell classification applications.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exhaustive Review of Acceleration Strategies for Monte Carlo Simulations in Photon Transit","authors":"Louzhe Xu, Zijie Zhu, Ting Li","doi":"10.1142/s1793545824300040","DOIUrl":"https://doi.org/10.1142/s1793545824300040","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yiwei Chen, Yi He, Hong Ye, Lina Xing, Xin Zhang, Guohua Shi
{"title":"Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image","authors":"Yiwei Chen, Yi He, Hong Ye, Lina Xing, Xin Zhang, Guohua Shi","doi":"10.1142/s1793545824500032","DOIUrl":"https://doi.org/10.1142/s1793545824500032","url":null,"abstract":"<p>The prediction of fundus fluorescein angiography (FFA) images from fundus structural images is a cutting-edge research topic in ophthalmological image processing. Prediction comprises estimating FFA from fundus camera imaging, single-phase FFA from scanning laser ophthalmoscopy (SLO), and three-phase FFA also from SLO. Although many deep learning models are available, a single model can only perform one or two of these prediction tasks. To accomplish three prediction tasks using a unified method, we propose a unified deep learning model for predicting FFA images from fundus structure images using a supervised generative adversarial network. The three prediction tasks are processed as follows: data preparation, network training under FFA supervision, and FFA image prediction from fundus structure images on a test set. By comparing the FFA images predicted by our model, pix2pix, and CycleGAN, we demonstrate the remarkable progress achieved by our proposal. The high performance of our model is validated in terms of the peak signal-to-noise ratio, structural similarity index, and mean squared error.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Review of polarization-based technology for biomedical applications","authors":"Caizhong Guan, Nan Zeng, Honghui He","doi":"10.1142/s1793545824300027","DOIUrl":"https://doi.org/10.1142/s1793545824300027","url":null,"abstract":"<p>Polarimetry is a powerful optical tool in the biomedical field, providing more comprehensive information on the sub-wavelength micro-physical structure of a sample than traditional light intensity measurement techniques. This review summarizes the concepts and techniques of polarization and its biomedical applications. Specifically, we first briefly describe the basic principles of polarized light and the Mueller matrix (MM) decomposition method, followed by some research progress of polarimetric measurement techniques in recent years. Finally, we introduce some studies on biological tissues and cells, and then illustrate the application value of polarization optical method.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zitong Zhao, Yanbo Wang, Jiaqi Chen, Mingjia Wang, Shulong Feng, Jin Yang, Nan Song, Jinyu Wang, Ci Sun
{"title":"Automatic detection method of bladder tumor cells based on color and shape features","authors":"Zitong Zhao, Yanbo Wang, Jiaqi Chen, Mingjia Wang, Shulong Feng, Jin Yang, Nan Song, Jinyu Wang, Ci Sun","doi":"10.1142/s1793545824500056","DOIUrl":"https://doi.org/10.1142/s1793545824500056","url":null,"abstract":"","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140245867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}