Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei
{"title":"Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network","authors":"Caizhong Guan, Bin He, Hongting Zhang, Shangpan Yang, Yang Xu, Honglian Xiong, Yaguang Zeng, Mingyi Wang, Xunbin Wei","doi":"10.1142/s1793545824500093","DOIUrl":null,"url":null,"abstract":"<p><i>In-vivo</i> flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment, which renders it a valuable tool for both scientific research and clinical applications. However, the conventional approach for improving classification accuracy often involves labeling cells with fluorescence, which can lead to potential phototoxicity. This study proposes a label-free <i>in-vivo</i> flow cytometry technique, called dynamic YOLOv4 (D-YOLOv4), which improves classification accuracy by integrating absorption intensity fluctuation modulation (AIFM) into YOLOv4 to demodulate the temporal features of moving red blood cells (RBCs) and platelets. Using zebrafish as an experimental model, the D-YOLOv4 method achieved average precisions (APs) of 0.90 for RBCs and 0.64 for thrombocytes (similar to platelets in mammals), resulting in an overall AP of 0.77. These scores notably surpass those attained by alternative network models, thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free <i>in-vivo</i> flow cytometry, which holds promise for diverse <i>in-vivo</i> cell classification applications.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/s1793545824500093","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment, which renders it a valuable tool for both scientific research and clinical applications. However, the conventional approach for improving classification accuracy often involves labeling cells with fluorescence, which can lead to potential phototoxicity. This study proposes a label-free in-vivo flow cytometry technique, called dynamic YOLOv4 (D-YOLOv4), which improves classification accuracy by integrating absorption intensity fluctuation modulation (AIFM) into YOLOv4 to demodulate the temporal features of moving red blood cells (RBCs) and platelets. Using zebrafish as an experimental model, the D-YOLOv4 method achieved average precisions (APs) of 0.90 for RBCs and 0.64 for thrombocytes (similar to platelets in mammals), resulting in an overall AP of 0.77. These scores notably surpass those attained by alternative network models, thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivo flow cytometry, which holds promise for diverse in-vivo cell classification applications.
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.