Kirill V Larin, Irina V Larina, Michael Liebling, Mary E Dickinson
{"title":"光学相干断层成像在哺乳动物胚胎早期发育过程中的实时成像。","authors":"Kirill V Larin, Irina V Larina, Michael Liebling, Mary E Dickinson","doi":"10.1142/S1793545809000619","DOIUrl":null,"url":null,"abstract":"<p><p>Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"2 3","pages":"253-259"},"PeriodicalIF":2.3000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545809000619","citationCount":"53","resultStr":"{\"title\":\"Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography.\",\"authors\":\"Kirill V Larin, Irina V Larina, Michael Liebling, Mary E Dickinson\",\"doi\":\"10.1142/S1793545809000619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.</p>\",\"PeriodicalId\":16248,\"journal\":{\"name\":\"Journal of Innovative Optical Health Sciences\",\"volume\":\"2 3\",\"pages\":\"253-259\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793545809000619\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innovative Optical Health Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793545809000619\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545809000619","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Live Imaging of Early Developmental Processes in Mammalian Embryos with Optical Coherence Tomography.
Early embryonic imaging of cardiovascular development in mammalian models requires a method that can penetrate through and distinguish the many tissue layers with high spatial and temporal resolution. In this paper we evaluate the capability of Optical Coherence Tomography (OCT) technique for structural 3D embryonic imaging in mouse embryos at different stages of the developmental process ranging from 7.5 dpc up to 10.5 dpc. Obtained results suggest that the collected data is suitable for quantitative and qualitative measurements to assess cardiovascular function in mouse models, which is likely to expand our knowledge of the complexity of the embryonic heart, and its development into an adult heart.
期刊介绍:
JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to:
-Photonic therapeutics and diagnostics-
Optical clinical technologies and systems-
Tissue optics-
Laser-tissue interaction and tissue engineering-
Biomedical spectroscopy-
Advanced microscopy and imaging-
Nanobiophotonics and optical molecular imaging-
Multimodal and hybrid biomedical imaging-
Micro/nanofabrication-
Medical microsystems-
Optical coherence tomography-
Photodynamic therapy.
JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.