Pedro Nogueira, João Magrinho, Luis Reis, Augusto Moita de Deus, Maria Beatriz Silva, Pedro Lopes, Luís Oliveira, António Castela, Ricardo Cláudio, Jorge L Alves, Maria Fátima Vaz, Maria Carmezim, Catarina Santos
{"title":"Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants.","authors":"Pedro Nogueira, João Magrinho, Luis Reis, Augusto Moita de Deus, Maria Beatriz Silva, Pedro Lopes, Luís Oliveira, António Castela, Ricardo Cláudio, Jorge L Alves, Maria Fátima Vaz, Maria Carmezim, Catarina Santos","doi":"10.3390/jfb15100313","DOIUrl":"https://doi.org/10.3390/jfb15100313","url":null,"abstract":"<p><p>Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing technologies for creating customised 316L Stainless Steel (SS) implants with biomimetic characteristics, controlled porosity, and optimal structural and functional properties. However, the behaviour of as-fabricated 3D 316L SS structures without any surface finishing in environments that simulate body fluids remains largely unknown. To address this knowledge gap, the present study investigates the surface characteristics, the internal porosity, the corrosion in simulated body fluid (SBF), and the mechanical properties of as-fabricated 316L SS structures manufactured by L-PBF with rhombitruncated cuboctahedron (RTCO) unit cells with two distinct relative densities (10 and 35%). The microstructural analysis confirmed that the RTCO structure has a pure austenitic phase with a roughness of ~20 µm and a fine cellular morphology. The micro-CT revealed the presence of keyholes and a lack of fusion pores in both RTCO structures. Despite the difference in the internal porosity, the mechanical properties of both structures remain within the range of bone tissue and in line with the Gibson and Ashby model. Additionally, the as-fabricated RTCO structures demonstrated passive corrosion behaviour in the SBF solution. Thus, as-fabricated porous structures are promising biomaterials for implants due to their suitable surface roughness, mechanical properties, and corrosion resistance, facilitating bone tissue growth.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508611/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G Dias, Marcelo Melo Soares, Maria Angelica Miglino
{"title":"PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles.","authors":"Thamires Santos-Silva, Inácio Silva Viana, Andrea Barros Piazzon S Queiroz, Fabrício Singaretti de Oliveira, Bianca de Oliveira Horvath-Pereira, Leandro Norberto da Silva-Júnior, Michelle Silva Araujo, Paulo Alescio Canola, Luís Gustavo Gosuen G Dias, Marcelo Melo Soares, Maria Angelica Miglino","doi":"10.3390/jfb15100311","DOIUrl":"https://doi.org/10.3390/jfb15100311","url":null,"abstract":"<p><p>Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Aldulaijan, Raghad Alruwili, Rawan Almulaify, Fatimah A Alhassan, Yousif A Al-Dulaijan, Faris A Alshahrani, Lamia Mokeem, Mohammed M Gad, Mary Anne S Melo, Abdulrahman A Balhaddad
{"title":"Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis.","authors":"Sarah Aldulaijan, Raghad Alruwili, Rawan Almulaify, Fatimah A Alhassan, Yousif A Al-Dulaijan, Faris A Alshahrani, Lamia Mokeem, Mohammed M Gad, Mary Anne S Melo, Abdulrahman A Balhaddad","doi":"10.3390/jfb15100310","DOIUrl":"https://doi.org/10.3390/jfb15100310","url":null,"abstract":"<p><p><i>Candida albicans</i> (<i>C. albicans</i>) adhering to denture-based resins (DBRs) is a known cause of denture stomatitis. A new approach to prevent denture stomatitis is to include antimicrobial substances within DBRs. Here, we examined the mechanical performance and antifungal properties of DBRs containing benzyldimethyldodecyl ammonium chloride (C<sub>12</sub>BDMA-Cl) as an antimicrobial compound. C<sub>12</sub>BDMA-Cl is a quaternary ammonium compound, and its antifungal properties have never been investigated when combined with dental acrylic resin. Therefore, we modified a commercially available heat-polymerized acrylic DBR to contain 3 and 5 wt.% of C<sub>12</sub>BDMA-Cl. Unmodified DBR was used as a control group. Specimens were prepared using the conventional heat processing method. The specimen's flexural strength, elastic modulus, microhardness, and surface roughness were evaluated. <i>C. albicans</i> biofilm was grown on the specimens and assessed via colony-forming units (CFUs) and scanning electron microscopy (SEM). In silico molecular docking was applied to predict the potential C<sub>12</sub>BDMA-Cl inhibition activity as an antifungal drug. The 3% C<sub>12</sub>BDMA-Cl DBR demonstrated antifungal activities without a deterioration effect on the mechanical performance. SEM images indicated fewer colonies in DBR containing C<sub>12</sub>BDMA-Cl, which can be a potential approach to managing denture stomatitis. In conclusion, C<sub>12</sub>BDMA-Cl is a promising antifungal agent for preventing and treating denture stomatitis.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesús Alejandro Torres-Betancourt, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, Sergio Eduardo Nakagoshi-Cepeda, Katiushka Arevalo-Niño, María Argelia Akemi Nakagoshi-Cepeda, Claudio Cabral-Romero
{"title":"A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells.","authors":"Jesús Alejandro Torres-Betancourt, Rene Hernández-Delgadillo, Juan Valerio Cauich-Rodríguez, Diego Adrián Oliva-Rico, Juan Manuel Solis-Soto, Claudia María García-Cuellar, Yesennia Sánchez-Pérez, Nayely Pineda-Aguilar, Samantha Flores-Treviño, Irene Meester, Sergio Eduardo Nakagoshi-Cepeda, Katiushka Arevalo-Niño, María Argelia Akemi Nakagoshi-Cepeda, Claudio Cabral-Romero","doi":"10.3390/jfb15100309","DOIUrl":"https://doi.org/10.3390/jfb15100309","url":null,"abstract":"<p><p>Electrospun membranes (EMs) have a wide range of applications, including use as local delivery systems. In this study, we manufactured a polyurethane Tecoflex™ EM loaded with bismuth-based lipophilic nanoparticles (Tecoflex™ EMs-BisBAL NPs). The physicochemical and mechanical characteristics, along with the antitumor and bactericidal effects, were evaluated using a breast cancer cell line and methicillin-susceptible and resistant <i>Staphylococcus aureus</i> (MRSA). Drug-free Tecoflex™ EMs and Tecoflex™ EMs-BisBAL NPs had similar fiber diameters of 4.65 ± 1.42 µm and 3.95 ± 1.32 µm, respectively. Drug-free Tecoflex™ EMs did not negatively impact a human fibroblast culture, indicating that the vehicle is biocompatible. Tecoflex™ EMs-BisBAL NPs increased 94% more in size than drug-free Tecoflex™ EMs, indicating that the BisBAL NPs enhanced hydration capacity. Tecoflex™ EMs-BisBAL NPs were highly bactericidal against both methicillin-susceptible <i>S. aureus</i> and MRSA clinical isolates, inhibiting their growth by 93.11% and 61.70%, respectively. Additionally, Tecoflex™ EMs-BisBAL NPs decreased the viability of MCF-7 tumor cells by 86% after 24 h exposure and 70.1% within 15 min. Regarding the mechanism of action of Tecoflex™ EMs-BisBAL NPs, it appears to disrupt the tumor cell membrane. In conclusion, Tecoflex™ EMs-BisBAL NPs constitute an innovative low-cost drug delivery system for human breast cancer and postoperative wound infections.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takaaki Matsuoka, Katsuaki Dan, Keita Takanashi, Akihiro Ogino
{"title":"Early Effects of Porcine Placental Extracts and Stem Cell-Derived Exosomes on Aging Stress in Skin Cells.","authors":"Takaaki Matsuoka, Katsuaki Dan, Keita Takanashi, Akihiro Ogino","doi":"10.3390/jfb15100306","DOIUrl":"https://doi.org/10.3390/jfb15100306","url":null,"abstract":"<p><p>The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H<sub>2</sub>O<sub>2</sub> stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H<sub>2</sub>O<sub>2</sub> stimulation) and inhibited reactive oxygen species accumulation following H<sub>2</sub>O<sub>2</sub> stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509013/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia L van Agtmaal, Sanne W G van Hoogstraten, Jacobus J C Arts
{"title":"Prosthetic Joint Infection Research Models in NZW Rabbits: Opportunities for Standardization-A Systematic Review.","authors":"Julia L van Agtmaal, Sanne W G van Hoogstraten, Jacobus J C Arts","doi":"10.3390/jfb15100307","DOIUrl":"https://doi.org/10.3390/jfb15100307","url":null,"abstract":"<p><p>Prosthetic joint infection (PJI) is a major complication following total arthroplasty. Rising antimicrobial resistance (AMR) to antibiotics will further increase therapeutic insufficiency. New antibacterial technologies are being developed to prevent PJI. In vivo models are still needed to bridge the translational gap to clinical implementation. Though rabbit models have been used most frequently, there is no consensus about methodology and measured outcomes. The PubMed, Scopus, and EMBASE databases were searched for literature on PJI in rabbit models. Data extraction included bias control, experimental design, and outcome measures of the NZW rabbit models in the articles. A total of 60 articles were included in this systematic literature review. The articles were divided into six groups based on the PJI intervention: no intervention used (21%), revision surgery (14%), prevention with only antibiotics (21%), prevention with surface modifications (7%), prevention with coatings (23%), and others (14%). Despite the current availability of guidelines and recommendations regarding experimental design, bias control, and outcome measures, many articles neglect to report on these matters. Ultimately, this analysis aims to assist researchers in determining suitable clinically relevant methodologies and outcome measures for in vivo PJI models using NZW rabbits to test new antimicrobial technologies.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angelo Michele Inchingolo, Alessio Danilo Inchingolo, Paola Nardelli, Giulia Latini, Irma Trilli, Laura Ferrante, Giuseppina Malcangi, Andrea Palermo, Francesco Inchingolo, Gianna Dipalma
{"title":"Stem Cells: Present Understanding and Prospects for Regenerative Dentistry.","authors":"Angelo Michele Inchingolo, Alessio Danilo Inchingolo, Paola Nardelli, Giulia Latini, Irma Trilli, Laura Ferrante, Giuseppina Malcangi, Andrea Palermo, Francesco Inchingolo, Gianna Dipalma","doi":"10.3390/jfb15100308","DOIUrl":"https://doi.org/10.3390/jfb15100308","url":null,"abstract":"<p><p>Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to their proliferative and differentiative abilities. This systematic review, following PRISMA guidelines, evaluated fifteen studies and identified effective strategies for improving dental, periodontal, and bone tissue regeneration through scaffolds, secretomes, and bioengineering methods. Key advancements include the use of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) to boost cell viability and manage inflammation. Additionally, pharmacological agents like matrine and surface modifications on biomaterials improve stem cell adhesion and promote osteogenic differentiation. By integrating these approaches, regenerative medicine and TE can optimize dental therapies and enhance patient outcomes. This review highlights the potential and challenges in this field, providing a critical assessment of current research and future directions.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508604/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ayoub Tanji, Xuesong Fan, Ridwan Sakidja, Peter K Liaw, Hendra Hermawan
{"title":"Role of Niobium on the Passivation Mechanisms of TiHfZrNb High-Entropy Alloys in Hanks' Simulated Body Fluid.","authors":"Ayoub Tanji, Xuesong Fan, Ridwan Sakidja, Peter K Liaw, Hendra Hermawan","doi":"10.3390/jfb15100305","DOIUrl":"https://doi.org/10.3390/jfb15100305","url":null,"abstract":"<p><p>A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks' simulated body fluid by analyzing electrochemical data with three analytical models. Results confirm that higher niobium content in the alloys reinforces the compactness of the passive film by favoring the dominance of film formation and thickening mechanism over the dissolution mechanism. Higher niobium content enhances the passivation kinetics to rapidly form the first layer, and total surface coverage reinforces the capacitive-resistant behavior of the film by enrichment with niobium oxides and reduces the point defect density and their mobility across the film, lowering pitting initiation susceptibility. With the high resistance to dissolution and rapid repassivation ability in the aggressive Hanks' simulated body fluid, the TiHfZrNb alloys confirm their great potential as new materials for biomedical implants and warrant further biocompatibility testing.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial Activity of Amino-Modified Cellulose Nanofibrils Decorated with Silver Nanoparticles.","authors":"Vesna Lazić, Jovan M Nedeljković, Vanja Kokol","doi":"10.3390/jfb15100304","DOIUrl":"https://doi.org/10.3390/jfb15100304","url":null,"abstract":"<p><p>Silver nanoparticles (Ag NPs) conjugated with amino-functionalized cellulose nanofibrils (NH<sub>2</sub>-CNFs) were in situ-prepared by reducing silver ions with free amino groups from NH<sub>2</sub>-CNFs. The spectroscopy and transmission electron microscopy measurements confirmed the presence of non-agglomerated nanometer-in-size Ag NPs within micrometer-large NH<sub>2</sub>-CNFs of high (20 wt.-%) content. Although the consumption of amino groups during the formation of Ag NPs lowers the ζ-potential and surface charge of prepared inorganic-organic hybrids (from +31.3 to +19.9 mV and from 2.4 to 1.0 mmol/g at pH 7, respectively), their values are sufficiently positive to ensure electrostatic interaction with negatively charged cell walls of pathogens in acidic and slightly (up to pH ~8.5) alkaline solutions. The antimicrobial activity of hybrid microparticles against various pathogens (<i>Escherichia coli</i>, <i>Pseudomonas aeruginosa</i>, <i>Staphylococcus aureus</i>, and <i>Candida albicans</i>) is comparable with pristine NH<sub>2</sub>-CNFs. However, a long-timescale use of hybrids ensures the slow and controlled release of Ag<sup>+</sup> ions to surrounding media (less than 1.0 wt.-% for one month).</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Osteoblast Response to Widely Ranged Texturing Conditions Obtained through High Power Laser Beams on Ti Surfaces.","authors":"Federico Alessandro Ruffinatti, Tullio Genova, Ilaria Roato, Martina Perin, Giorgia Chinigò, Riccardo Pedraza, Olivio Della Bella, Francesca Motta, Elisa Aimo Boot, Domenico D'Angelo, Giorgio Gatti, Giorgia Scarpellino, Luca Munaron, Federico Mussano","doi":"10.3390/jfb15100303","DOIUrl":"https://doi.org/10.3390/jfb15100303","url":null,"abstract":"<p><p>Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened surfaces, with the aim of studying the early biological response elicited on MC3T3-E1 pre-osteoblasts. Prior to cell tests, the samples underwent SEM analysis, optical profilometry, protein adsorption assay, and optical contact angle measurement with water and diiodomethane to determine surface free energy. While all the specimens proved to be biocompatible, supporting similar cell viability at 1, 2, and 3 days, surface roughness could impact significantly on cell adhesion. Factorial analysis and linear regression showed, in a robust and unprecedented way, that an isotropic distribution of deep and closely spaced valleys provides the best condition for cell adhesion, to which both protein adsorption and surface free energy were highly correlated. Overall, here the authors provide, for the first time, a thorough investigation of the relationship between roughness parameters and osteoblast adhesion that may be applied to design and produce new tailored interfaces for implant materials.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"15 10","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142501682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}