Valeria Pruzzo, Francesca Bonomi, Ettore Limido, Andrea Weinzierl, Yves Harder, Matthias W Laschke
{"title":"Seeding of Dermal Substitutes with Glucose-Pretreated Nanofat Accelerates In Vivo Vascularization and Tissue Integration.","authors":"Valeria Pruzzo, Francesca Bonomi, Ettore Limido, Andrea Weinzierl, Yves Harder, Matthias W Laschke","doi":"10.3390/jfb16090311","DOIUrl":null,"url":null,"abstract":"<p><p>The exposure of endothelial cells to high glucose concentrations promotes angiogenesis. The present study investigated whether this pro-angiogenic effect of glucose is suitable to improve the capability of nanofat to vascularize implanted dermal substitutes. Nanofat was processed from white adipose tissue originating from green fluorescent protein (GFP)<sup>+</sup> C57BL/6J donor mice and incubated for 1 h in Hank's Balanced Salt Solution with or without (control) a high level of glucose (30 mM). The pretreated nanofat was seeded onto dermal substitutes, which were analyzed by intravital fluorescence microscopy, histology and immunohistochemistry in dorsal skinfold chambers of GFP<sup>-</sup> C57BL/6J mice to assess their vivo performance over a period of 14 days. A high level of glucose-pretreated nanofat did not induce a stronger immune response when compared to the control. However, it improved the vascularization of the implants, as shown by a significantly higher density of blood-perfused microvessels in the border zones (~3.6-fold increase) and more CD31<sup>+</sup>/GFP<sup>+</sup> microvessels (~3-fold increase) inside the implants. Accordingly, high glucose-pretreated nanofat levels also enhanced the tissue integration of the dermal substitutes, as indicated by the deposition of more type I collagen (~2.9-fold increase). These findings suggest that the short-term exposure of nanofat to a high level of glucose represents a promising and clinically feasible strategy to enhance its regenerative properties when seeded onto dermal substitutes.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090311","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The exposure of endothelial cells to high glucose concentrations promotes angiogenesis. The present study investigated whether this pro-angiogenic effect of glucose is suitable to improve the capability of nanofat to vascularize implanted dermal substitutes. Nanofat was processed from white adipose tissue originating from green fluorescent protein (GFP)+ C57BL/6J donor mice and incubated for 1 h in Hank's Balanced Salt Solution with or without (control) a high level of glucose (30 mM). The pretreated nanofat was seeded onto dermal substitutes, which were analyzed by intravital fluorescence microscopy, histology and immunohistochemistry in dorsal skinfold chambers of GFP- C57BL/6J mice to assess their vivo performance over a period of 14 days. A high level of glucose-pretreated nanofat did not induce a stronger immune response when compared to the control. However, it improved the vascularization of the implants, as shown by a significantly higher density of blood-perfused microvessels in the border zones (~3.6-fold increase) and more CD31+/GFP+ microvessels (~3-fold increase) inside the implants. Accordingly, high glucose-pretreated nanofat levels also enhanced the tissue integration of the dermal substitutes, as indicated by the deposition of more type I collagen (~2.9-fold increase). These findings suggest that the short-term exposure of nanofat to a high level of glucose represents a promising and clinically feasible strategy to enhance its regenerative properties when seeded onto dermal substitutes.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.