Ádám Vörös, Klaudia Kulcsár, Dávid Pammer, Ibolya Zsoldos
{"title":"循环载荷对独特骨膜下种植体螺钉移除力矩的影响。","authors":"Ádám Vörös, Klaudia Kulcsár, Dávid Pammer, Ibolya Zsoldos","doi":"10.3390/jfb16090306","DOIUrl":null,"url":null,"abstract":"<p><p>During the investigation, the effect of screw tightening torque on the potential loosening of screws under load was examined in the case of custom-made subperiosteal implants. The study focused on the connection screws between the implant components, testing the commonly applied tightening torques of 15 Ncm and 30 Ncm. Mastication was simulated using a custom-designed, PLC-controlled testing device, which allowed for the reproduction of variable numbers, forces, and speeds of bite cycles. With this device, six different scenarios were tested, including 500, 2000, and 10,000 bite cycles, under both constant and variable bite forces. A caliper was used to record potential length changes of the screws, force sensors measured the bite forces, and calibrated torque screwdrivers were used to verify the loosening torques. Based on the analysis of the measured data, it was concluded that for the M1.8 screws tested, a tightening torque of 15 Ncm does not provide sufficient resistance against loosening, whereas 30 Ncm offers adequate stability.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470481/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Cyclic Loading on the Removal Torque of Unique Subperiosteal Implant Screws.\",\"authors\":\"Ádám Vörös, Klaudia Kulcsár, Dávid Pammer, Ibolya Zsoldos\",\"doi\":\"10.3390/jfb16090306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the investigation, the effect of screw tightening torque on the potential loosening of screws under load was examined in the case of custom-made subperiosteal implants. The study focused on the connection screws between the implant components, testing the commonly applied tightening torques of 15 Ncm and 30 Ncm. Mastication was simulated using a custom-designed, PLC-controlled testing device, which allowed for the reproduction of variable numbers, forces, and speeds of bite cycles. With this device, six different scenarios were tested, including 500, 2000, and 10,000 bite cycles, under both constant and variable bite forces. A caliper was used to record potential length changes of the screws, force sensors measured the bite forces, and calibrated torque screwdrivers were used to verify the loosening torques. Based on the analysis of the measured data, it was concluded that for the M1.8 screws tested, a tightening torque of 15 Ncm does not provide sufficient resistance against loosening, whereas 30 Ncm offers adequate stability.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090306\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090306","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Influence of Cyclic Loading on the Removal Torque of Unique Subperiosteal Implant Screws.
During the investigation, the effect of screw tightening torque on the potential loosening of screws under load was examined in the case of custom-made subperiosteal implants. The study focused on the connection screws between the implant components, testing the commonly applied tightening torques of 15 Ncm and 30 Ncm. Mastication was simulated using a custom-designed, PLC-controlled testing device, which allowed for the reproduction of variable numbers, forces, and speeds of bite cycles. With this device, six different scenarios were tested, including 500, 2000, and 10,000 bite cycles, under both constant and variable bite forces. A caliper was used to record potential length changes of the screws, force sensors measured the bite forces, and calibrated torque screwdrivers were used to verify the loosening torques. Based on the analysis of the measured data, it was concluded that for the M1.8 screws tested, a tightening torque of 15 Ncm does not provide sufficient resistance against loosening, whereas 30 Ncm offers adequate stability.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.