{"title":"电纺生物材料用于无疤痕痤疮创面愈合:进展与展望。","authors":"Jiahui Chen, Liping Zhou, Zhongci Hang, Xiaochun Bian, Tong Huo, Bing Peng, Haohao Li, Yongqiang Wen, Hongwu Du","doi":"10.3390/jfb16090316","DOIUrl":null,"url":null,"abstract":"<p><p>Acne vulgaris is a chronic disease that occurs in the pilosebaceous units and ranks eighth in the global prevalence of all diseases. In its severe forms such as pustules, cysts, and nodules, acne can lead to permanent scarring and post-inflammatory hyperpigmentation, which are often difficult to reverse in the short term and significantly affect patients' psychological well-being and social interactions. Although a variety of pharmacological treatments are available, including retinoids, antibiotics, anti-androgens, benzoyl peroxide, and corticosteroids, the high recurrence rate and limited efficacy in scar prevention highlight the urgent need for innovative therapeutic strategies. Electrospinning technology has recently gained attention for fabricating nanofibrous patches with high porosity, biocompatibility, and biodegradability. These patches can offer antibacterial activity, absorb exudates, and provide mechanical protection, making them promising platforms for acne wound care. This review first outlines the pathophysiology of acne and the biological mechanisms underlying scar formation. We then present an overview of electrospinning techniques, commonly used polymers, and recent advancements in the field. Finally, we explore the potential of electrospun nanofibers loaded with mesenchymal stem cells or exosomes as next-generation therapeutic systems aimed at promoting scarless acne healing.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 9","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects.\",\"authors\":\"Jiahui Chen, Liping Zhou, Zhongci Hang, Xiaochun Bian, Tong Huo, Bing Peng, Haohao Li, Yongqiang Wen, Hongwu Du\",\"doi\":\"10.3390/jfb16090316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acne vulgaris is a chronic disease that occurs in the pilosebaceous units and ranks eighth in the global prevalence of all diseases. In its severe forms such as pustules, cysts, and nodules, acne can lead to permanent scarring and post-inflammatory hyperpigmentation, which are often difficult to reverse in the short term and significantly affect patients' psychological well-being and social interactions. Although a variety of pharmacological treatments are available, including retinoids, antibiotics, anti-androgens, benzoyl peroxide, and corticosteroids, the high recurrence rate and limited efficacy in scar prevention highlight the urgent need for innovative therapeutic strategies. Electrospinning technology has recently gained attention for fabricating nanofibrous patches with high porosity, biocompatibility, and biodegradability. These patches can offer antibacterial activity, absorb exudates, and provide mechanical protection, making them promising platforms for acne wound care. This review first outlines the pathophysiology of acne and the biological mechanisms underlying scar formation. We then present an overview of electrospinning techniques, commonly used polymers, and recent advancements in the field. Finally, we explore the potential of electrospun nanofibers loaded with mesenchymal stem cells or exosomes as next-generation therapeutic systems aimed at promoting scarless acne healing.</p>\",\"PeriodicalId\":15767,\"journal\":{\"name\":\"Journal of Functional Biomaterials\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/jfb16090316\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16090316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Electrospun Biomaterials for Scarless Acne Wound Healing: Advances and Prospects.
Acne vulgaris is a chronic disease that occurs in the pilosebaceous units and ranks eighth in the global prevalence of all diseases. In its severe forms such as pustules, cysts, and nodules, acne can lead to permanent scarring and post-inflammatory hyperpigmentation, which are often difficult to reverse in the short term and significantly affect patients' psychological well-being and social interactions. Although a variety of pharmacological treatments are available, including retinoids, antibiotics, anti-androgens, benzoyl peroxide, and corticosteroids, the high recurrence rate and limited efficacy in scar prevention highlight the urgent need for innovative therapeutic strategies. Electrospinning technology has recently gained attention for fabricating nanofibrous patches with high porosity, biocompatibility, and biodegradability. These patches can offer antibacterial activity, absorb exudates, and provide mechanical protection, making them promising platforms for acne wound care. This review first outlines the pathophysiology of acne and the biological mechanisms underlying scar formation. We then present an overview of electrospinning techniques, commonly used polymers, and recent advancements in the field. Finally, we explore the potential of electrospun nanofibers loaded with mesenchymal stem cells or exosomes as next-generation therapeutic systems aimed at promoting scarless acne healing.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.