{"title":"Few-shot learning for screening 2D Ga2CoS4−x supported single-atom catalysts for hydrogen production","authors":"","doi":"10.1016/j.jechem.2024.09.009","DOIUrl":"10.1016/j.jechem.2024.09.009","url":null,"abstract":"<div><div>Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction (HER), which faces challenges of slow kinetics and high overpotential. Efficient electrocatalysts, particularly single-atom catalysts (SACs) on two-dimensional (2D) materials, are essential. This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga<sub>2</sub>CoS<sub>4−</sub><em><sub>x</sub></em> supported SACs to predict HER catalytic activity. Initially, density functional theory (DFT) calculations showed that 2D Ga<sub>2</sub>CoS<sub>4</sub> is inactive for HER. However, defective Ga<sub>2</sub>CoS<sub>4−</sub><em><sub>x</sub></em> (<em>x</em> = 0–0.25) monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs), with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C, which typically exhibits an overpotential of around 50 mV in the acidic electrolyte, when the concentration of surface SV is lower than 8.3%. SVs generate spin-polarized states near the Fermi level, making them effective HER sites. We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga<sub>2</sub>CoS<sub>4−</sub><em><sub>x</sub></em>. Using DFT data from 18 SACs, an ML model with high prediction accuracy and reduced computation time was developed. An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified. This study thus provides a framework for screening SACs on 2D materials, enhancing catalyst design.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green synthesis of glycolic acid through the electrocatalytic reduction of oxalic acid over black TiO2: An experimental and theoretical study","authors":"","doi":"10.1016/j.jechem.2024.09.011","DOIUrl":"10.1016/j.jechem.2024.09.011","url":null,"abstract":"<div><div>Herein, we present the electrocatalytic four-electron hydrogenation of oxalic acid into glycolic acid using black TiO<sub>2</sub> as an electrocatalyst. Oxalic acid is an abundant compound found in several sources of organic waste. The results showed a high selectivity of black TiO<sub>2</sub> toward glycolic acid, with the formation of glyoxylic acid being the rate-limiting step (glyoxylic acid is the two-electron intermediate). The highest Faradaic efficiency (FE) of 69.6% ± 8.3% was achieved at 10.2 mA cm<sup>−2</sup> in 4 h of electrolysis using an H-type cell operated at room temperature, with 50.2% ± 3.8% of oxalic acid conversion (degradation kinetic constant <em>k</em> = 0.0042 ± 0.0001 min<sup>−1</sup>), 58.8% ± 7.0% of reaction yield and 1.2 ± 0.18 g L<sup>−1</sup> of glycolic acid production. A theoretical model of black TiO<sub>2</sub> coming from anatase TiO<sub>2</sub> was implemented by introducing Ti<sup>3+</sup> defects, which gave black TiO<sub>2</sub> the theoretical capability to easily transform oxalic acid into glycolic acid as experimentally observed. The reaction mechanism was supported and described in detail by density functional theory calculations, which revealed that surface Ti<sup>3+</sup> states were the main catalytic sites. This is the first time that a detailed step-by-step mechanism at the atomic level has been proposed for this electrocatalytic reaction, which represents a valuable contribution to the understanding of this process of high energy/environmental interest. This is also the first time that black TiO<sub>2</sub> has been used as an electrocatalyst for this sustainable process.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dielectric-ion-conductive ZnNb2O6 layer enabling rapid desolvation and diffusion for dendrite-free Zn metal batteries","authors":"","doi":"10.1016/j.jechem.2024.09.010","DOIUrl":"10.1016/j.jechem.2024.09.010","url":null,"abstract":"<div><div>Rechargeable aqueous zinc-metal batteries (AZMBs) are promising candidates for large-scale energy storage systems due to their low cost and high safety. However, their performance and sustainability are significantly hindered by the sluggish desolvation kinetics at the electrode/electrolyte interface and the corresponding hydrogen evolution reaction where active water molecules tightly participate in the Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> solvation shell. Herein, learnt from self-generated solid electrolyte interphase (SEI) in anodes, the dielectric but ion-conductive zinc niobate nanoparticles artificial layer is constructed on metallic Zn surface (ZNB@Zn), acting as a rapid desolvation promotor. The zincophilic and dielectric-conductive properties of ZNB layer accelerate interfacial desolvation/diffusion and suppress surface corrosion or dendrite formation, achieving uniform Zn plating/stripping behavior, as confirmed by electronic/optical microscopies and interface spectroscopical measurements together with theoretical calculations. Consequently, the as-prepared ZNB@Zn electrode exhibits excellent cycling stability of over 2000 h and robust reversibility (99.54%) even under high current density and depth of discharge conditions. Meanwhile, the assembled ZNB@Zn-based full cell displays high capacity-retention rate of 80.21% after 3000 cycles at 5 A g<sup>−1</sup> and outstanding rate performance up to 10 A g<sup>−1</sup>. The large-areal pouch cell is stabilized for hundreds of cycles, highlighting the bright prospects of the dielectric but ion-conductive layer in further application of AZMBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Staged dendrite suppression for high safe and stable lithium-sulfur batteries","authors":"","doi":"10.1016/j.jechem.2024.09.006","DOIUrl":"10.1016/j.jechem.2024.09.006","url":null,"abstract":"<div><div>The unavoidable dendrite growth and shuttle effect have long been stranglehold challenges limiting the safety and practicality of lithium-sulfur batteries. Herein, we propose a dual-action strategy to address the lithium dendrite issue in stages by constructing a multifunctional surface-negatively-charged nanodiamond layer with high ductility and robust puncture resistance on polypropylene (PP) separator. The uniformly loaded compact negative layer can not only significantly enhance electron transmission efficiency and promote uniform lithium deposition, but also reduce the formation of dendrite during early deposition stage. Most importantly, under the strong puncture stress encountered during the deterioration of lithium dendrite growth under limiting current, the high ductility and robust puncture resistance (145.88 MPa) of as-obtained nanodiamond layer can effectively prevent short circuits caused by unavoidable lithium dendrite. The Li||Li symmetrical cells assembled with nanodiamond layer modified PP demonstrated a stable cycle of over 1000 h at 2 mA cm<sup>−</sup><sup>2</sup> with a polarization voltage of only 29.3 mV. Additionally, the negative charged layer serves as a physical barrier blocking lithium polysulfide ions, effectively mitigating capacity attenuation. The improved cells achieved a capacity decay of only 0.042% per cycle after 700 cycles at 3 C, demonstrating effective suppression of dendrite growth and capacity attenuation, showing promising prospect.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrocatalytic cleavage of a lignin β-O-4 model compound and coupling with nitrogen-containing aromatics using Prussian blue analogue-derived nickel–cobalt spinel","authors":"","doi":"10.1016/j.jechem.2024.08.065","DOIUrl":"10.1016/j.jechem.2024.08.065","url":null,"abstract":"<div><div>Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential. We demonstrate the targeted synthesis and cation modulation of NiCo<sub>2</sub>O<sub>4</sub> spinel nanoboxes, synthesized via cation exchange and calcination oxidation. These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds, specifically 2-phenoxy-1-phenylethanol, into nitrogen-containing aromatics, achieving high conversion rates and selectivities. These catalysts were synthesized via a cation exchange and calcination oxidation process, using Prussian blue nanocubes as precursors. The porous architecture and polymetallic composition of the NiCo<sub>2</sub>O<sub>4</sub> spinel demonstrated superior performance in electrocatalytic oxidative coupling, achieving a 99.2 wt% conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt% for quinoline derivatives and 31.5 wt% for phenol. Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives, the elucidation of a multistage reaction pathway involving C<img>O bond cleavage, hydroxyaldol condensation, and C<img>N bond formation, and a deeper mechanistic understanding derived from DFT simulations. This work establishes a new strategy for lignin valorization, offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions, without the need for additional reagents.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulating crystallization and retarding oxidation in Sn-Pb perovskite via 1D cation engineering for high performance all-perovskite tandem solar cells","authors":"","doi":"10.1016/j.jechem.2024.09.007","DOIUrl":"10.1016/j.jechem.2024.09.007","url":null,"abstract":"<div><div>All-perovskite tandem solar cells have the potential to surpass the theoretical efficiency limit of single junction solar cells by reducing thermalization losses. However, the challenges encompass the oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> and uncontrolled crystallization kinetics in Sn-Pb perovskites, leading to nonradiative recombination and compositional heterogeneity to decrease photovoltaic efficiency and operational stability. Herein, we introduced an ionic liquid additive, 1-ethyl-3-methylimidazolium iodide (EMIMI) into Sn-Pb perovskite precursor to form low-dimensional Sn-rich/pure-Sn perovskites at grain boundaries, which mitigates oxidation of Sn<sup>2+</sup> to Sn<sup>4+</sup> and regulates the film-forming dynamics of Sn/Pb-based perovskite films. The optimized single-junction Sn-Pb perovskite devices incorporating EMIMI achieved a high efficiency of 22.87%. Furthermore, combined with wide-bandgap perovskite sub-cells in tandem device, we demonstrate 2-terminal all-perovskite tandem solar cells with a power conversion efficiency of 28.34%, achieving improved operational stability.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CaH2-promoted activity of Ni-carbonate interface for CO2 methanation","authors":"","doi":"10.1016/j.jechem.2024.09.005","DOIUrl":"10.1016/j.jechem.2024.09.005","url":null,"abstract":"<div><div>Transition metal-carbonate interfaces often act as active sites in heterogeneous catalytic reactions. The interface between transition metal and metal carbonate exhibits a dynamic equilibrium during the CO<sub>2</sub> hydrogenation reaction, involving surface carbonate hydrogenation and CO<sub>2</sub> chemisorption. Nonetheless, there have been few reports on engineering the activity of the interface between transition metal and alkaline earth metal carbonate for catalytic CO<sub>2</sub> conversion. This work demonstrated that the incorporation of CaH<sub>2</sub> in Ni/CaCO<sub>3</sub> enhances the CO<sub>2</sub> methanation activity of the catalysts. The CO<sub>2</sub> conversion for Ni/CaH<sub>2</sub>-CaCO<sub>3</sub> reached 68.5% at 400 °C, which was much higher than that of the Ni/CaCO<sub>3</sub> (31.6%) and Ni/CaH<sub>2</sub>-CaO (42.4%) catalysts. Furthermore, the Ni/CaH<sub>2</sub>-CaCO<sub>3</sub> catalysts remained stable during the stability test for 24 h at 400 °C and 8 bar. Our research revealed that CaH<sub>2</sub> played a crucial role in promoting the activity of the Ni-carbonate interface for CO<sub>2</sub> methanation. CaH<sub>2</sub> could modify the electronic structure of Ni and tune the structural properties of CaCO<sub>3</sub> to generate medium basic sites (OH groups), which are favorable for the activation of H<sub>2</sub> and CO<sub>2</sub>. In-situ Fourier transform infrared spectroscopy (FTIR) analysis combined with density functional theory calculations demonstrated that CO<sub>2</sub> activation occurs at the hydroxyl group (OH) on the CaH<sub>2</sub>-modified Ni-carbonate surface, leading to the formation of CO<sub>3</sub>H* species. Furthermore, our study has confirmed that CO<sub>2</sub> methanation over the Ni/CaH<sub>2</sub>-CaCO<sub>3</sub> catalysts proceeds via the formate pathway.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluorinated poly(p-triphenylene isatin) anion exchange membranes based on hydrophilic hydroxyl side chain modulation for fuel cells","authors":"","doi":"10.1016/j.jechem.2024.09.008","DOIUrl":"10.1016/j.jechem.2024.09.008","url":null,"abstract":"<div><div>The development of alkaline fuel cells is moving forward at an accelerated pace, and the application of ether-free bonded polymers to anion exchange membranes (AEMs) has been widely investigated. However, the question of the “trade-off” between AEM ionic conductivity and dimensional stability remains difficult. The strategy of inducing microphase separation to improve the performance of AEM has attracted much attention recently, but the design of optimal molecular structures is still being explored. Here, this work introduced different ratios of 3-bromo-1,1,1-trifluoroacetone (<em>x</em> = 40, 50, and 60) into the main chain of poly(p-terphenylene isatin). Because fluorinated groups have excellent hydrophobicity, hydrophilic hydroxyl-containing side chains are introduced to jointly adjust the formation of phase separation structure. The results show that PTI-PTF<sub>50</sub>-NOH AEM with the appropriate fluorinated group ratio has the best ionic conductivity and alkali stability under the combined effect of both. It has an ionic conductivity of 133.83 mS cm<sup>−1</sup> at 80 °C. In addition, the OH<sup>−</sup> conductivity remains at 89% of the initial value at 80 °C and 3 M KOH for 1056 h of immersion. The cell polarization curve based on PTI-PTF<sub>50</sub>-NOH shows a power density of 734.76 mW cm<sup>−2</sup> at a current density of 1807.7 mA cm<sup>−2</sup>.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142415973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress of catalysts for direct coal liquefaction","authors":"","doi":"10.1016/j.jechem.2024.09.003","DOIUrl":"10.1016/j.jechem.2024.09.003","url":null,"abstract":"<div><div>Coal direct liquefaction technology is a crucial contemporary coal chemical technology for efficient and clean use of coal resources. The development of direct coal liquefaction technology and the promotion of alternative energy sources are important measures to guarantee energy security and economic security. However, several challenges need to be addressed, including low conversion rate, inadequate oil yield, significant coking, demanding reaction conditions, and high energy consumption. Extensive research has been conducted on these issues, but further exploration is required in certain aspects such as pyrolysis of macromolecules during the liquefaction process, hydrogen activation, catalysts’ performance and stability, solvent hydrogenation, as well as interactions between free radicals to understand their mechanisms better. This paper presents a comprehensive analysis of the design strategy for efficient catalysts in coal liquefaction, encompassing the mechanism of coal liquefaction, catalyst construction, and enhancement of catalytic conversion efficiency. It serves as a comprehensive guide for further research endeavors. Firstly, it systematically summarizes the conversion mechanism of direct coal liquefaction, provides detailed descriptions of various catalyst design strategies, and especially outlines the catalytic mechanism. Furthermore, it addresses the challenges and prospects associated with constructing efficient catalysts for direct coal liquefaction based on an understanding of their action mechanisms.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ru/NiMnB spherical cluster pillar for highly proficient green hydrogen electrocatalyst at high current density","authors":"","doi":"10.1016/j.jechem.2024.08.060","DOIUrl":"10.1016/j.jechem.2024.08.060","url":null,"abstract":"<div><p>Advanced OER/HER electrocatalytic alternatives are crucial for the wide adaptation of green hydrogen energy. Herein, Ru/NiMnB spherical cluster pillar (SCP), denoted as Ru/NiMnB, is synthesized using a combination of electro-deposition and hydrothermal reaction. Systematic investigation of Ru doping in the NiMnB matrix revealed significant improvements in electrocatalytic performance. The Ru/NiMnB SCPs demonstrate superior OER/HER activity with low overpotentials of 150 and 103 mV at 50 mA/cm<sup>2</sup> in 1 M KOH, making them highly competitive with state-of-the-art electrocatalysts. Remarkably, the Ru/NiMnB SCPs exhibit a low 2-E cell voltage of 2.80 V at ultra-high current density of 2,000 mA/cm<sup>2</sup> in 1 M KOH, outperforming the standard benchmark electrodes of RuO<sub>2</sub> || Pt/C, thereby positioning Ru/NiMnB as one of the best bifunctional electrocatalysts. These SCPs exhibit exceptional high-current characteristics, stability and corrosion resistance, as evidenced by continuous operation at 1,000 mA/cm<sup>2</sup> high-current density for over 150 h in 6 M KOH at elevated temperatures under harsh industrial conditions. Only a small amount of Ru incorporation significantly enhances the electrocatalytic performances of NiMnB, attributed to increased active sites and improved intrinsic properties such as conductivity, adsorption/desorption capability and reaction rates. Consequently, Ru/NiMnB SCPs present a promising bi-functional electrode concept for efficient green H<sub>2</sub> production.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}