Journal of Energy Chemistry最新文献

筛选
英文 中文
Prominent cycling reversibility and kinetics enabled by CaTiO3 protective layer on Zn metal for aqueous Zn-ion batteries 锌金属上的 CaTiO3 保护层为水性锌离子电池带来卓越的循环可逆性和动力学性能
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-09-04 DOI: 10.1016/j.jechem.2024.08.044
{"title":"Prominent cycling reversibility and kinetics enabled by CaTiO3 protective layer on Zn metal for aqueous Zn-ion batteries","authors":"","doi":"10.1016/j.jechem.2024.08.044","DOIUrl":"10.1016/j.jechem.2024.08.044","url":null,"abstract":"<div><p>Aqueous Zn-ion batteries (AZIBs) have received considerable attention owing to their various advantages such as safety, low cost, simple battery assembly conditions, and high ionic conductivity. However, they still suffer from serious problems, including uncontrollable dendrite growth, corrosion, hydrogen evolution reaction (HER) from water decomposition, electrode passivation, and unexpected by-products. The creation of a uniform artificial nanocrystal layer on the Zn anode surface is a promising strategy for resolving these issues. Herein, we propose the use of a perovskite CaTiO<sub>3</sub> (CTO) protective layer on Zn (CTO@Zn) as a promising approach for improving the performance of AZIBs. The CTO artificial layer provides an efficient pathway for Zn ion diffusion towards the Zn metal because of the high dielectric constant (<em>ε</em><sub>r</sub> = 180) and ferroelectric characteristics that enable the alignment of dipole moments and redistribute the Zn<sup>2+</sup> ions in the CTO layer. By avoiding the direct contact of the Zn anode with the electrolyte solution, the uneven dendrite growth, corrosion, parasitic side reactions, and HER are mitigated, while CTO retains its mechanical and chemical robustness during cycling. Consequently, CTO@Zn demonstrates an improved lifespan in a symmetric cell configuration compared with bare Zn. CTO@Zn shows steady overpotential (∼68 mV) for 1500 h at 1 mA cm<sup>−2</sup>/0.5 mA h cm<sup>−2</sup>, excelling bare Zn. Moreover, when paired with the V<sub>2</sub>O<sub>5</sub>-C cathode, the CTO@Zn//V<sub>2</sub>O<sub>5</sub>-C full battery delivers 148.4 mA h g<sup>−1</sup> (based on the mass of the cathode) after 300 cycles. This study provides new insights into Zn metal anodes and the development of high-performance AZIBs.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the interfacial reaction environment via pH-dependent and induced ions to understand C–N bonds coupling performance in NO3− integrated CO2 reduction to carbon and nitrogen compounds over dual Cu-based N-doped carbon catalyst 通过 pH 依赖性离子和诱导离子调节界面反应环境,了解在双铜基掺杂 N 的碳催化剂上将 NO3- 集成 CO2 还原成碳氮化合物的过程中 C-N 键的耦合性能
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-09-04 DOI: 10.1016/j.jechem.2024.08.049
{"title":"Tuning the interfacial reaction environment via pH-dependent and induced ions to understand C–N bonds coupling performance in NO3− integrated CO2 reduction to carbon and nitrogen compounds over dual Cu-based N-doped carbon catalyst","authors":"","doi":"10.1016/j.jechem.2024.08.049","DOIUrl":"10.1016/j.jechem.2024.08.049","url":null,"abstract":"<div><p>Dual atomic catalysts (DAC), particularly copper (Cu<sub>2</sub>)-based nitrogen (N) doped graphene, show great potential to effectively convert CO<sub>2</sub> and nitrate (NO<sub>3</sub><sup>−</sup>) into important industrial chemicals such as ethylene, glycol, acetamide, and urea through an efficient catalytical process that involves C–C and C–N coupling. However, the origin of the coupling activity remained unclear, which substantially hinders the rational design of Cu-based catalysts for the N-integrated CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). To address this challenge, this work performed advanced density functional theory calculations incorporating explicit solvation based on a Cu<sub>2</sub>-based N-doped carbon (Cu<sub>2</sub>N<sub>6</sub>C<sub>10</sub>) catalyst for CO<sub>2</sub>RR. These calculations are aimed to gain insight into the reaction mechanisms for the synthesis of ethylene, acetamide, and urea via coupling in the interfacial reaction micro-environment. Due to the sluggishness of CO<sub>2</sub>, the formation of a solvation electric layer by anions (F<sup>−</sup>, Cl<sup>−</sup>, Br<sup>−</sup>, and I<sup>−</sup>) and cations (Na<sup>+</sup>, Mg<sup>2+</sup>, K<sup>+</sup>, and Ca<sup>2+</sup>) leads to electron transfer towards the Cu surface. This process significantly accelerates the reduction of CO<sub>2</sub>. These results reveal that *CO intermediates play a pivotal role in N-integrated CO<sub>2</sub>RR. Remarkably, the Cu<sub>2</sub>-based N-doped carbon catalyst examined in this study has demonstrated the most potential for C–N coupling to date. Our findings reveal that through the process of a condensation reaction between *CO and NH<sub>2</sub>OH for urea synthesis, *NO<sub>3</sub><sup>−</sup> is reduced to *NH<sub>3</sub>, and *CO<sub>2</sub> to *CCO at dual Cu atom sites. This dual-site reduction facilitates the synthesis of acetamide through a nucleophilic reaction between NH<sub>3</sub> and the ketene intermediate. Furthermore, we found that the I<sup>−</sup> and Mg<sup>2+</sup> ions, influenced by pH, were highly effective for acetamide and ammonia synthesis, except when F<sup>−</sup> and Ca<sup>2+</sup> were present. Furthermore, the mechanisms of C–N bond formation were investigated via ab-initio molecular dynamics simulations, and we found that adjusting the micro-environment can change the dominant side reaction, shifting from hydrogen production in acidic conditions to water reduction in alkaline ones. This study introduces a novel approach using ion-H<sub>2</sub>O cages to significantly enhance the efficiency of C–N coupling reactions.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering atomic Rb-N configurations to tune radical pathways for highly selective photocatalytic H2O2 synthesis coupled with biomass valorization 设计原子 Rb-N 构型,调整自由基途径,实现高选择性光催化 H2O2 合成及生物质增值
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-09-02 DOI: 10.1016/j.jechem.2024.08.045
{"title":"Engineering atomic Rb-N configurations to tune radical pathways for highly selective photocatalytic H2O2 synthesis coupled with biomass valorization","authors":"","doi":"10.1016/j.jechem.2024.08.045","DOIUrl":"10.1016/j.jechem.2024.08.045","url":null,"abstract":"<div><p>Photocatalytic oxygen reduction for hydrogen peroxide (H₂O₂) synthesis presents a green and cost-effective production method. However, achieving highly selective H₂O₂ synthesis remains challenging, necessitating precise control over free radical reaction pathways and minimizing undesirable oxidative by-products. Herein, we report for the visible light-driven simultaneous co-photocatalytic reduction of O<sub>2</sub> to H<sub>2</sub>O<sub>2</sub> and oxidation of biomass using the atomic rubidium-nitride modified carbon nitride (CNRb). The optimized CNRb catalyst demonstrates a record photoreduction rate of 8.01 mM h<sup>−1</sup> for H<sub>2</sub>O<sub>2</sub> generation and photooxidation rate of 3.75 mM h<sup>−1</sup> for furfuryl alcohol to furoic acid, achieving a remarkable solar-to-chemical conversion (SCC) efficiency of up to 2.27%. Experimental characterizations and DFT calculation disclosed that the introducing atomic Rb–N configurations allows for the high-selective generation of superoxide radicals while suppressing hydroxyl free radical formation. This is because the Rb–N serves as the new alternative site to perceive a stronger connection position for O<sub>2</sub> adsorption and reinforce the capability to extract protons, thereby triggering a high selective redox product formation. This study holds great potential in precisely regulating reactive radical processes at the atomic level, thereby paving the way for efficient synthesis of H<sub>2</sub>O<sub>2</sub> coupled with biomass valorization.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying the dynamic behaviors in complete reconstruction of Co-based complex precatalysts during electrocatalytic oxygen evolution 识别电催化氧进化过程中完全重构 Co 基复合前催化剂的动态行为
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-09-02 DOI: 10.1016/j.jechem.2024.08.043
{"title":"Identifying the dynamic behaviors in complete reconstruction of Co-based complex precatalysts during electrocatalytic oxygen evolution","authors":"","doi":"10.1016/j.jechem.2024.08.043","DOIUrl":"10.1016/j.jechem.2024.08.043","url":null,"abstract":"<div><p>Transition metal-based nanomaterials have emerged as promising electrocatalysts for oxygen evolution reaction (OER). Considerable research efforts have shown that self-reconstruction occurs on these nanomaterials under operating conditions of OER process. However, most of them undergo incomplete reconstruction with limited thickness of reconstruction layer, leading to low component utilization and arduous exploration of real catalytic mechanism. Herein, we identify the dynamic behaviors in complete reconstruction of Co-based complexes during OER. The hollow phytic acid (PA) cross-linked CoFe-based complex nanoboxes with porous nanowalls are designed because of their good electrolyte penetration and mass transport ability, in favor of the fast and complete reconstruction. A series of experiment characterizations demonstrate that the reconstruction process includes the fast substitution of PA by OH<sup>−</sup> to form Co(Fe)(OH)<em><sub>x</sub></em> and subsequent potential-driven oxidation to Co(Fe)OOH. The obtained CoFeOOH delivers a low overpotential of 290 mV at a current density of 10 mA cm<sup>−2</sup> and a long-term stability. The experiment results together with theory calculations reveal that the Fe incorporation can result in the electron rearrangement of reconstructed CoFeOOH and optimization of their electronic structure, accounting for the enhanced OER activity. The work provides new insights into complete reconstruction of metal-based complexes during OER and offers guidelines for rational design of high-performance electrocatalysts.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing biomass utilization: An integrated strategy for coproducing multiple chemicals 生物质利用最大化:共同生产多种化学品的综合战略
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-31 DOI: 10.1016/j.jechem.2024.08.042
{"title":"Maximizing biomass utilization: An integrated strategy for coproducing multiple chemicals","authors":"","doi":"10.1016/j.jechem.2024.08.042","DOIUrl":"10.1016/j.jechem.2024.08.042","url":null,"abstract":"<div><p>Lignocellulosic biomass is one of the viable solutions to alleviate the global warming. However, the limited utilization of biomass majorly focused on cellulose and hemicellulose restricts the economic and environmental feasibilities. To cope with this issue, we proposed an integrated process of co-producing 1,6-hexanediol (1,6-HDO) with tetrahydrofuran and adipic acid from biomass, referred to as Strategy A. To compare the impacts of lignin upgrading and feedstock, Strategy B, which co-produces tetrahydrofuran alone, and Strategy C, which is the traditional route to produce 1,6-HDO from fossil fuels, were used. Heat networks are also designed to reduce operating costs and indirect carbon emissions due to energy consumption, saving 87% and 83% of the heat and cooling requirements, respectively, in Strategy A. The market competitiveness of Strategy A was evaluated by determining the minimum selling price through techno-economic analysis, and sustainability was thoroughly investigated by quantifying the environmental impacts through both midpoint and endpoint life-cycle assessments (LCAs). Strategy A was found to be the most favorable both economically (US$3,402/ton) and environmentally (−26.9 kg CO<sub>2</sub> eq.). This indicates that lignin valorization is not only economically but also environmentally preferred. Finally, changes in economic and environmental feasibilities depending on economic, process, and environmental parameters were investigated using sensitivity and uncertainty analyses. The results of these analyses provide valuable insight into bio-based chemical production.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Record-breaking bifunctional oxygen electrocatalyst accomplished by a data-driven approach for zinc-air batteries 通过数据驱动方法为锌-空气电池开发出创纪录的双功能氧电催化剂
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-30 DOI: 10.1016/j.jechem.2024.08.040
{"title":"Record-breaking bifunctional oxygen electrocatalyst accomplished by a data-driven approach for zinc-air batteries","authors":"","doi":"10.1016/j.jechem.2024.08.040","DOIUrl":"10.1016/j.jechem.2024.08.040","url":null,"abstract":"","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095495624005965/pdfft?md5=138fcd692ff800cd684483132b289a56&pid=1-s2.0-S2095495624005965-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal design of three-dimensional porous graphene-iron based promotors for kinetically rationalized lithium-sulfur chemistry 通用设计三维多孔石墨烯-铁基促进剂,促进动力学合理的锂硫化学反应
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-30 DOI: 10.1016/j.jechem.2024.08.039
{"title":"Universal design of three-dimensional porous graphene-iron based promotors for kinetically rationalized lithium-sulfur chemistry","authors":"","doi":"10.1016/j.jechem.2024.08.039","DOIUrl":"10.1016/j.jechem.2024.08.039","url":null,"abstract":"<div><p>Lithium-sulfur (Li-S) batteries are widely deemed to be one of the most potential candidates for future secondary batteries because of their remarkable energy density. Nevertheless, notorious polysulfide shuttling and retarded sulfur reaction kinetics pose significant obstacles to the further application of Li-S batteries. While rationally designed highly active electrocatalysts can facilitate polysulfide conversion, the universal and scalable synthesis strategies need to be developed. Herein, a universal synthetic strategy to construct a series of three-dimensional (3D) porous graphene-iron (3DGr-Fe) based electrocatalysts involving 3DGr-FeP, 3DGr-Fe<sub>3</sub>C, and 3DGr-Fe<sub>3</sub>Se<sub>4</sub> is exploited for manipulating the Li-S redox reactions. It has been observed that the implementation of a 3D porous Gr architecture leads to the well-designed conductive networks, while the uniformly dispersed iron nanoparticles introduce an abundance of active sites, fostering the lithium polysulfide conversion, thereby bolstering the overall electrochemical performance. The Li-S battery with the 3DGr-Fe based electrocatalyst exhibits remarkable capacity retention of 94.8% upon 100 times at 0.2 C. Moreover, the soft-packaged Li-S pouch cell based on such a 3DGr-Fe electrocatalyst delivers superior capacity of 1060.71 mA h g<sup>−1</sup> and guarantees for the continuous 30 min work of fan toy. This investigation gives comprehensive insights into the design, synthesis, and mechanism of 3DGr-Fe based electrocatalysts with high activity toward efficient and durable Li-S batteries.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142167921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructing Pr-doped CoOOH catalytic sites for efficient electrooxidation of 5-hydroxymethylfurfural 构建掺杂 Pr 的 CoOOH 催化位点以高效电氧化 5-羟甲基糠醛
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-30 DOI: 10.1016/j.jechem.2024.08.041
{"title":"Constructing Pr-doped CoOOH catalytic sites for efficient electrooxidation of 5-hydroxymethylfurfural","authors":"","doi":"10.1016/j.jechem.2024.08.041","DOIUrl":"10.1016/j.jechem.2024.08.041","url":null,"abstract":"<div><p>Electrocatalytic conversion of renewable biomass is emerging as a promising route for sustainable chemical production; hence it urgently calls for developing efficient electrocatalysts with low potentials and high current densities. Herein, a Pr-doped Co(OH)<sub>2</sub> hexagonal sheet (Pr/Co = 1/9, in mole) is synthesized by electrodeposition as highly performant catalyst for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) to produce 2,5-furandicarboxylic acid (FDCA). This novel and low-cost catalyst possesses a rather low onset potential of 1.05 V (vs. RHE) and requires only 1.10 V (vs. RHE) to reach a current density of 10 mA cm<sup>−2</sup> for HMFOR, significantly outperforming Co(OH)<sub>2</sub> benchmark (i.e., 210 mV higher to reach 10 mA cm<sup>−2</sup>). The origin of Pr promotion effect as well as the evolution of CoOOH catalytic sites and HMFOR process has been deeply elucidated by physical characterizations, kinetic experiments, in situ electrochemical techniques, and theoretical calculations. The unique Pr-ameliorated CoOOH active centers enable 100% conversion of HMF, 99.6% selectivity of FDCA, and 99.7% Faraday efficiency, with a superior cycling durability toward HMFOR. This can be one of the most outstanding results for Co-based HMFOR catalysts to date in the literature. Thereby this work can help open up new horizons for constructing novel and efficient Co-based electrocatalysts by the utilization of lanthanide elements.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142173622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic effect of bonding heterogeneity and phonon localization in introducing excellent thermoelectric properties in layered heteroanionic NdZnSbO material 在层状异阴离子 NdZnSbO 材料中引入优异热电性能的成键异质性和声子定位协同效应
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-30 DOI: 10.1016/j.jechem.2024.08.035
{"title":"Synergistic effect of bonding heterogeneity and phonon localization in introducing excellent thermoelectric properties in layered heteroanionic NdZnSbO material","authors":"","doi":"10.1016/j.jechem.2024.08.035","DOIUrl":"10.1016/j.jechem.2024.08.035","url":null,"abstract":"<div><p>Layered rare-earth metal oxides, harnessing the dual properties of oxides and two-dimensional layered materials, exhibit remarkable thermal stability and quantum confinement effects. Therefore, this work adopts the first-principles calculation combined with the Boltzmann transport theory to predict the thermoelectric properties of NdZnSbO compound. The coexistence of weak interlayer van der Waals interactions, robust intralayer ionic bonding, and partial covalent bonding leads to remarkable bonding heterogeneity, which engenders pronounced phonon scattering and imposes constraints on thermal transport along the out-of-plane direction. The weakened chemical bonds induced by the antibonding states, together with the rattling-like behavior of the Zn atom, culminate in the profound anharmonicity in the layered NdZnSbO compound. The weakening bond and heavy element contribute to the softness of phonon modes, which significantly diminishes the phonon group velocity. The redistribution-dominated four-phonon scattering process spans a large optical gap, which effectively reduces the lattice thermal conductivity. The NdZnSbO compound exhibits direct semiconductor characteristic with a bandgap of 0.73 eV by adopting the Heyd-Scuseria-Ernzerhof (HSE06) functional in combination with spin–orbit coupling (SOC) effect. The multi-valley feature of NdZnSbO compound augur favorably for band degeneracy, thus amplifying the power factor. Consequently, an optimal figure-of-merit (<em>ZT</em>) of 3.40 at 900 K is achieved for the <em>n</em>-type NdZnSbO compound. The present study delves deeply insights into the origins for the low thermal conductivity of NdZnSbO compound and proposes an optimization scheme to enhance overall thermoelectric performance.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142228695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogenation of CO2 to p-xylene over ZnZrOx/hollow tubular HZSM-5 tandem catalyst 在 ZnZrOx/空心管状 HZSM-5 串联催化剂上将 CO2 加氢转化为对二甲苯
IF 13.1 1区 化学
Journal of Energy Chemistry Pub Date : 2024-08-30 DOI: 10.1016/j.jechem.2024.08.038
{"title":"Hydrogenation of CO2 to p-xylene over ZnZrOx/hollow tubular HZSM-5 tandem catalyst","authors":"","doi":"10.1016/j.jechem.2024.08.038","DOIUrl":"10.1016/j.jechem.2024.08.038","url":null,"abstract":"<div><p>The conversion of CO<sub>2</sub> into specific aromatics by modulating the morphology of zeolites is a promising strategy. HZSM-5 zeolite with hollow tubular morphology is reported. The morphology of zeolite was precisely controlled, and the acid sites on its outer surface were passivated by steam-assisted crystallization method, so that the zeolite exhibits higher aromatic selectivity than sheet HZSM-5 zeolite and greater p-xylene selectivity than chain HZSM-5 zeolite. The tandem catalyst was formed by combining hollow tubular HZSM-5 zeolites with ZnZrO<em><sub>x</sub></em> metal oxides. The para-selectivity of p-xylene reached 76.2% at reaction temperature of 320 °C, pressure of 3.0 MPa, and a flow rate of 2400 mL g<sup>−1</sup> h<sup>−1</sup> with an H<sub>2</sub>/CO<sub>2</sub> molar ratio of 3/1. Further research indicates that the high selectivity of p-xylene is due to the pore structure of hollow tubular HZSM-5 zeolite, which is conducive to the formation of p-xylene. Moreover, the passivation of the acid site located on the outer surface of zeolite effectively prevents the isomerization of p-xylene. The reaction mechanism of CO<sub>2</sub> hydrogenation over the tandem catalyst was investigated using in-situ diffuse reflectance Fourier transform infrared spectroscopy and density functional theory. The results showed that the CO<sub>2</sub> to p-xylene followed a methanol-mediated route over ZnZrO<em><sub>x</sub></em>/hollow tubular HZSM-5 tandem catalysts. In addition, the catalyst showed no significant deactivation in the 100 h stability test. This present study provides an effective strategy for the design of catalysts aimed at selectively preparing aromatics through CO<sub>2</sub> hydrogenation.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142169036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信