{"title":"Valence electron matching law for MXene-based single-atom catalysts","authors":"","doi":"10.1016/j.jechem.2024.10.006","DOIUrl":"10.1016/j.jechem.2024.10.006","url":null,"abstract":"<div><div>Single-atom catalysts (SACs) have attracted considerable interest in the fields of energy and environmental science due to their adjustable catalytic activity. In this study, we investigated the matching of valence electron numbers between single atoms and adsorbed intermediates (O, N, C, and H) in MXene-anchored SACs (M-Ti<sub>2</sub>C/M-Ti<sub>2</sub>CO<sub>2</sub>). The density functional theory results demonstrated that the sum of the valence electron number (<em>V</em><sub>M</sub>) of the interface-doped metal and the valence electron number (<em>V</em><sub>A</sub>) of the adsorbed intermediates in M-Ti<sub>2</sub>C followed the 10-valence electron matching law. Furthermore, based on the 10-valence electron matching law, we deduced that the sum of the valence electron number (<em>k</em>) and <em>V</em><sub>M</sub> for the molecular adsorption intermediate interactions in M-Ti<sub>2</sub>CO<sub>2</sub> adhered to the 11-valence electron matching law. Electrostatic repulsion between the interface electrons in M-Ti<sub>2</sub>CO<sub>2</sub> and H<sub>2</sub>O weakened the adsorption of intermediates. Furthermore, we applied the 11-valence electron matching law to guide the design of catalysts for nitrogen reduction reaction, specifically for N<sub>2</sub> → NNH conversion, in the M-Ti<sub>2</sub>CO<sub>2</sub> structure. The sure independence screening and sparsifying operator algorithm was used to fit a simple three-dimensional descriptor of the adsorbate (<em>R</em><sup>2</sup> up to 0.970) for catalyst design. Our study introduced a valence electron matching principle between doped metals (single atoms) and adsorbed intermediates (atomic and molecular) for MXene-based catalysts, providing new insights into the design of high-performance SACs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design principles of novel Zn fluorocarboxylate protection layer toward durable dendrite-free Zn metal anodes","authors":"","doi":"10.1016/j.jechem.2024.10.004","DOIUrl":"10.1016/j.jechem.2024.10.004","url":null,"abstract":"<div><div>Aqueous Zn ion batteries (ZIBs) have received extensive attention due to their intrinsic safety, high abundance, and low cost. However, uncontrolled dendrite growth and water-induced side reactions at electrode/electrolyte interfaces hinder the advancement of ZIBs. Herein, density functional theory (DFT) calculation indicates that Zn heptafluorobutyrate can facilitate uniform Zn<sup>2+</sup> deposition by leveraging the abundant zincophilic groups (e.g., –COO<sup>−</sup> and –CF) and inhibit water-induced side reactions due to the presence of hydrophobic carbon chains. A Zn heptafluorobutyrate protective layer (denoted as ZFA) is constructed on the metallic Zn surface in situ by acid etching process to control Zn<sup>2+</sup> desolvation and nucleation behaviors, ensuring enhanced reversibility and stability of Zn anodes. Consequently, the Zn@ZFA anode demonstrates stable operation for more than 2200 h at 1 mA cm<sup>−2</sup> and over 7300 cycles at 40 mA cm<sup>−2</sup>, with high Coulombic efficiency of 99.8% over 1900 cycles at 5 mA cm<sup>−2</sup>. Impressively, Zn@ZFA||VO<sub>2</sub> full cell achieves exceptional cycle life (204 mA h g<sup>−1</sup> after 750 cycles at 3 A g<sup>−1</sup>) and remarkable rate performance (236 mA g<sup>−1</sup> at 10 A g<sup>−1</sup>). This work provides an insightful guidance for constructing a protection layer of dendrite-free Zn anodes for high-performance ZIBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Upcycling of monomers derived from waste polyester plastics via electrocatalysis","authors":"","doi":"10.1016/j.jechem.2024.10.005","DOIUrl":"10.1016/j.jechem.2024.10.005","url":null,"abstract":"<div><div>Electrocatalysis offers efficient and targeted conversion of monomers derived from waste polyester plastics to chemical products under ambient temperature and pressure conditions. This review provides analysis of research on electrochemical upgrading of monomers derived from waste polyester plastics published from 2021 to present. Factors for assessing upgrading of waste polyester plastics include alkaline hydrolysis pretreatment, indices of electrochemical reaction process (activity, stability, and techno-economic analysis), separation, and product recovery. Types of depolymerization monomers and their value-added products are summarized along with electrocatalytic mechanisms and reaction pathways. Notably, cathode coupled reactions offer significant value for anodic waste plastic oxidation during electrolysis processes. Development of bifunctional electrocatalysts can reduce the cost of coupled systems and complexity of the electrolyzer. Upgrading and recycling of waste plastic monomers using electrocatalytic technology should undergo downstream processing to form high-value products containing C–N and C–S derived functional groups obtained from depolymerized monomers. Electrochemical conversion and upgrading of monomers derived from waste polyester plastics can contribute to industrialization and global economies and help to realize environmental sustainability.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrating Cu+/Cu0 sites on porous nitrogen-doped carbon nanofibers for stable and efficient CO2 electroreduction to multicarbon products","authors":"","doi":"10.1016/j.jechem.2024.09.059","DOIUrl":"10.1016/j.jechem.2024.09.059","url":null,"abstract":"<div><div>The Cu<sup>+</sup>/Cu<sup>0</sup> sites of copper-based catalysts are crucial for enhancing the production of multicarbon (C<sub>2+</sub>) products from electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR). However, the unstable Cu<sup>+</sup> and insufficient Cu<sup>+</sup>/Cu<sup>0</sup> active sites lead to their limited selectivity and stability for C<sub>2+</sub> production. Herein, we embedded copper oxide (CuO<em><sub>x</sub></em>) particles into porous nitrogen-doped carbon nanofibers (CuO<em><sub>x</sub></em>@PCNF) by pyrolysis of the electrospun fiber film containing ZIF-8 and Cu<sub>2</sub>O particles. The porous nitrogen-doped carbon nanofibers protected and dispersed Cu<sup>+</sup> species, and its microporous structure enhanced the interaction between CuO<em><sub>x</sub></em> and reactants during eCO<sub>2</sub>RR. The obtained CuO<em><sub>x</sub></em>@PCNF created more effective and stable Cu<sup>+</sup>/Cu<sup>0</sup> active sites. It showed a high Faradaic efficiency of 62.5% for C<sub>2+</sub> products in H-cell, which was 2 times higher than that of bare CuO<em><sub>x</sub></em> (∼31.1%). Furthermore, it achieved a maximum Faradaic efficiency of 80.7% for C<sub>2+</sub> products in flow cell. In situ characterization and density functional theory (DFT) calculation confirmed that the N-doped carbon layer protected Cu<sup>+</sup> from electrochemical reduction and lowered the energy barrier for the dimerization of *CO. Stable and exposed Cu<sup>+</sup>/Cu<sup>0</sup> active sites enhanced the enrichment of *CO and promoted the C–C coupling reaction on the catalyst surface, which facilitated the formation of C<sub>2+</sub> products.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Platinum modification of metallic cobalt defect sites for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural","authors":"","doi":"10.1016/j.jechem.2024.09.054","DOIUrl":"10.1016/j.jechem.2024.09.054","url":null,"abstract":"<div><div>Co<sub>3</sub>O<sub>4</sub> possesses both direct and indirect oxidation effects and is considered as a promising catalyst for the oxidation of 5-hydroxymethylfurfural (HMF). However, the enrichment and activation effects of Co<sub>3</sub>O<sub>4</sub> on OH<sup>−</sup> and HMF are weak, which limits its further application. Metal defect engineering can regulate the electronic structure, optimize the adsorption of intermediates, and improve the catalytic activity by breaking the symmetry of the material, which is rarely involved in the upgrading of biomass. In this work, we prepare Co<sub>3</sub>O<sub>4</sub> with metal defects and load the precious metal platinum at the defect sites (Pt-Vco). The results of in-situ characterizations, electrochemical measurements, and theoretical calculations indicate that the reduction of Co–Co coordination number and the formation of Pt–Co bond induce the decrease of electron filling in the antibonding orbitals of Co element. The resulting upward shift of the <em>d</em>-band center of Co combined with the characteristic adsorption of Pt species synergically enhances the enrichment and activation of organic molecules and OH<sup>−</sup> species, thus exhibiting excellent HMF oxidation activity (including a lower onset potential (1.14 V) and 19 times higher current density than pure Co<sub>3</sub>O<sub>4</sub> at 1.35 V). In summary, this work explores the adsorption enhancement mechanism of metal defect sites modified by precious metal in detail, provides a new option for improving the HMF oxidation activity of cobalt-based materials, broadens the application field of metal defect based materials, and gives an innovative guidance for the functional utilization of metal defect sites in biomass conversion.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructing electrochemically stable single crystal Ni-rich cathode material via modification with high valence metal oxides","authors":"","doi":"10.1016/j.jechem.2024.09.056","DOIUrl":"10.1016/j.jechem.2024.09.056","url":null,"abstract":"<div><div>Single crystal Ni-rich cathode materials (SCNCM) are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance. However, the challenges of cation mixing, phase change during charge/discharge, and low thermal stability remain unresolved in single crystal particles. To address these issues, SCNCM are rationally modified by incorporating transition metal (TM) oxides, and the influence of metal ions with different valence states on the electrochemical properties of SCNCM is methodically explored through experimental results and theoretical calculations. Enhanced structural stability is demonstrated in SCNCM after the modifications, and the degree of improvement in the matrix materials varies depending on the valence state of doped TM ions. The highest structural stability is found in WO<sub>3</sub>-modified SCNCM, due to the smaller effective ion radii, higher electro-negativity, stronger W–O bond, and efficient suppression of oxygen vacancy generation. As a result, WO<sub>3</sub>-modified SCNCM have outstanding cycle performance, with a capacity retention rate of 90.2% after 200 cycles. This study provides an insight into the design of advanced SCNCM with enhanced reversibility and cyclability.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilizing water and regulating interfacial electrostatic interaction with economical supporting salt for stable Zn metal anode","authors":"","doi":"10.1016/j.jechem.2024.10.003","DOIUrl":"10.1016/j.jechem.2024.10.003","url":null,"abstract":"<div><div>Developing rechargeable aqueous Zn batteries for large-scale energy storage is impeded by inadequate reversibility and stability of the Zn anode, primarily caused by parasitic reactions and heterogeneous deposition. This study proposes an economical electrolyte strategy to address these Zn-related issues. The addition of a supporting salt enhances the thermodynamic stability of water, reduces the number of highly reactive water molecules, and modulates the interfacial electrostatic interaction. This approach effectively suppresses hydrogen evolution reaction and uncontrolled deposition. Remarkably, the rationally proportioned electrolyte allows a high average Coulombic efficiency of 99.93% for 1000 cycles in a Zn||Cu battery and a prolonged lifespan exceeding 4800 h in Zn||Zn cells. The knock-on effect is that Zn||MnO<sub>2</sub> pouch cells deliver stable cycling performance, demonstrating the viability of this approach for practical applications.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sulfur doping and oxygen vacancy in In2O3 nanotube co-regulate intermediates of CO2 electroreduction for efficient HCOOH production and rechargeable Zn-CO2 battery","authors":"","doi":"10.1016/j.jechem.2024.09.057","DOIUrl":"10.1016/j.jechem.2024.09.057","url":null,"abstract":"<div><div>By manipulating the distribution of surface electrons, defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Herein, we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping (V<sub>o</sub>-S<sub>x</sub>-In<sub>2</sub>O<sub>3</sub>) for improved CO<sub>2</sub>-to-HCOOH electroreduction and Zn-CO<sub>2</sub> battery. The componential synergy significantly reduces the *OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for *HCOOH desorption. As a result, the CO<sub>2</sub>RR performance of V<sub>o</sub>-S<sub>x</sub>-In<sub>2</sub>O<sub>3</sub> outperforms Pure-In<sub>2</sub>O<sub>3</sub> and V<sub>o</sub>-In<sub>2</sub>O<sub>3</sub>, where V<sub>o</sub>-S<sub>53</sub>-In<sub>2</sub>O<sub>3</sub> exhibits a maximal HCOOH Faradaic efficiency of 92.4% at −1.2 V <em>vs</em>. reversible hydrogen electrode (RHE) in H-cell and above 92% over a wide window potential with high current density (119.1 mA cm<sup>−2</sup> at −1.1 V <em>vs.</em> RHE) in flow cell. Furthermore, the rechargeable Zn-CO<sub>2</sub> battery utilizing V<sub>o</sub>-S<sub>53</sub>-In<sub>2</sub>O<sub>3</sub> as cathode shows a high power density of 2.29 mW cm<sup>−2</sup> and a long-term stability during charge–discharge cycles. This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO<sub>2</sub>RR.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-phase interface engineering via parallel modulation strategy for highly reversible Zn metal batteries","authors":"","doi":"10.1016/j.jechem.2024.09.053","DOIUrl":"10.1016/j.jechem.2024.09.053","url":null,"abstract":"<div><div>The reversibility and stability of aqueous Zn metal batteries (AZMBs) are largely limited by Zn dendrites and interfacial parasitic reactions. Herein, we propose a parallel modulation strategy to boost the reversibility of the Zn anode by introducing <em>N</em>,<em>N</em>,<em>N’</em>,<em>N’</em>-tetramethylchloroformamidinium hexafluorophosphate (TCFH) as an additive in the electrolyte. TCFH is composed of PF<sub>6</sub><sup>−</sup> and TN<sup>+</sup> with opposite charges. PF<sub>6</sub><sup>−</sup> can spontaneously induce the in-situ generation of ZnF<sub>2</sub> solid electrolyte interface (SEI) on the anode, which can improve the transport kinetics of Zn<sup>2+</sup> at the interface, thus promoting the rapid and uniform deposition of Zn as well as inhibiting the growth of dendrites. In addition, TN<sup>+</sup> is enriched at the anode surface during Zn deposition through the anchoring effect, which brings a reconfiguration of the ion/molecule distribution. The anchored-TN<sup>+</sup> reduces the concentrations of H<sub>2</sub>O and SO<sub>4</sub><sup>2−</sup>, sufficiently restraining the parasitic reaction. Thanks to the dual-phase interface engineering constructed of PF<sub>6</sub><sup>−</sup> and TN<sup>+</sup> in parallel, the symmetric cell with the proposed electrolyte survives long cycling stability over 750 h at 20 mA cm<sup>−2</sup>, 10 mAh cm<sup>−2</sup>. This study offers a distinct viewpoint to the multidimensional optimization of Zn anodes for high-performance AZMBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electro-functionalized 2D nitrogen-carbon nanosheets decorated with symbiotic cobalt single-atoms/clusters","authors":"","doi":"10.1016/j.jechem.2024.09.052","DOIUrl":"10.1016/j.jechem.2024.09.052","url":null,"abstract":"<div><div>Two-dimensional (2D) materials loaded with single atoms and clusters are being set at the forefront of catalysis due to their distinctive geometric and electronic features. However, the usually-complicated synthesis procedures impede in-depth clarification of their catalytic mechanisms. To this end, herein we developed an efficient one-step dimension-reduction carbonization strategy, with which we successfully architected a highly-efficient catalyst for oxygen reduction reaction (ORR), featured with symbiotic cobalt single atoms and clusters decorated in two-dimensional (2D) ultra-thin (3.5 nm thickness) nitrogen-carbon nanosheets. The synergistic effects of the two components afford excellent oxygen reduction activity in alkaline media (<em>E</em><sub>1/2</sub> = 0.823 V <em>vs.</em> RHE) and thereof a high power density (146.61 mW cm<sup>−2</sup>) in an assembled Zn-air battery. As revealed by theoretical calculations, the cobalt clusters can regulate electrons surrounding those individual atoms and affect the adsorption of intermediate species. As a consequence, the derived active sites of single cobalt atoms lead to a significant improvement of the ORR performance. Thus, our work may fuel interests to delicate architecture of single atoms and clusters coexisting 2D support toward optimal electrocatalytic performance.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}