Entropy-mediated layered oxide cathodes: Synergistic channel expansion and strain control for sodium-ion batteries at cryogenic conditions

IF 13.1 1区 化学 Q1 Energy
Yuzhen Dang , Yurong Wu , Zhe Xu , Jianxing Wang , Runguo Zheng , Zhishuang Song , Zhiyuan Wang , Xiaoping Lin , Yanguo Liu , Dan Wang
{"title":"Entropy-mediated layered oxide cathodes: Synergistic channel expansion and strain control for sodium-ion batteries at cryogenic conditions","authors":"Yuzhen Dang ,&nbsp;Yurong Wu ,&nbsp;Zhe Xu ,&nbsp;Jianxing Wang ,&nbsp;Runguo Zheng ,&nbsp;Zhishuang Song ,&nbsp;Zhiyuan Wang ,&nbsp;Xiaoping Lin ,&nbsp;Yanguo Liu ,&nbsp;Dan Wang","doi":"10.1016/j.jechem.2025.06.006","DOIUrl":null,"url":null,"abstract":"<div><div>O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability, yet hindered by structural degradation and sluggish Na<sup>+</sup> diffusion kinetics. Herein, we present a sodium-deficient high-entropy layered oxide cathode (Na<sub>0.85</sub>Ni<sub>0.3</sub>Mn<sub>0.3</sub>Fe<sub>0.1</sub>Co<sub>0.15</sub>Ti<sub>0.1</sub>Cu<sub>0.05</sub>B<sub>0.02</sub>O<sub>2</sub>, denoted as Na0.85-HEO), combining sodium content optimization and high-entropy composition design. Incorporating six transition metals and light element boron creates a unique high-entropy configuration, effectively mitigating local lattice distortion and internal strain through chemical disorder effects, thereby enabling highly reversible phase transitions (O3-P3-O3) and smaller volume change (0.6 Å<sup>3</sup>) during the initial cycle. The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm, facilitating the Na<sup>+</sup> diffusion kinetics. Moreover, this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of (O<sub>2</sub>)<em><sup>n</sup></em><sup>−</sup>, thereby suppressing gas release during the cycling process. The resultant cathode demonstrates exceptional cyclability (80% capacity retention after 400 cycles at 100 mA g<sup>−1</sup> in a full cell), and remarkable low-temperature performance (108.6 mAh g<sup>−1</sup> at −40 °C). This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"109 ","pages":"Pages 637-648"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability, yet hindered by structural degradation and sluggish Na+ diffusion kinetics. Herein, we present a sodium-deficient high-entropy layered oxide cathode (Na0.85Ni0.3Mn0.3Fe0.1Co0.15Ti0.1Cu0.05B0.02O2, denoted as Na0.85-HEO), combining sodium content optimization and high-entropy composition design. Incorporating six transition metals and light element boron creates a unique high-entropy configuration, effectively mitigating local lattice distortion and internal strain through chemical disorder effects, thereby enabling highly reversible phase transitions (O3-P3-O3) and smaller volume change (0.6 Å3) during the initial cycle. The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm, facilitating the Na+ diffusion kinetics. Moreover, this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of (O2)n, thereby suppressing gas release during the cycling process. The resultant cathode demonstrates exceptional cyclability (80% capacity retention after 400 cycles at 100 mA g−1 in a full cell), and remarkable low-temperature performance (108.6 mAh g−1 at −40 °C). This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.

Abstract Image

熵介导的层状氧化物阴极:低温条件下钠离子电池的协同通道扩展和应变控制
o3型层状氧化物阴极具有较高的理论容量和较宽的温度适应性,但结构降解和Na+扩散动力学缓慢阻碍了其在钠离子电池中的应用。本文结合钠含量优化和高熵成分设计,提出了一种缺钠高熵层状氧化物阴极(Na0.85Ni0.3Mn0.3Fe0.1Co0.15Ti0.1Cu0.05B0.02O2,记为Na0.85-HEO)。结合六种过渡金属和轻元素硼创造了独特的高熵构型,有效地减轻了局部晶格畸变和通过化学无序效应产生的内部应变,从而在初始循环中实现了高度可逆的相变(O3-P3-O3)和较小的体积变化(0.6 Å3)。缺钠高熵设计有效地将钠层间距增加到0.322 nm,有利于Na+扩散动力学。此外,这种高熵策略使阴极具有完全的固溶体电荷曲线,并显著降低了(O2)n−的比例,从而抑制了循环过程中的气体释放。所得到的阴极具有优异的可循环性(在充满电池的情况下,在100 mA g - 1下循环400次后容量保持80%),以及出色的低温性能(在- 40°C下108.6 mAh g - 1)。这项工作指导了具有定制离子传输通道的高熵电极材料的设计,用于极端温度储能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信