Reciprocal enhancement of iodine and manganese redox kinetics towards high-performance rechargeable zinc-iodine-manganese hybrid batteries

IF 13.1 1区 化学 Q1 Energy
Yanchun Sun , Xiang Li , Rihui Li , Jiali Shou , Zhiyao Sun , Jian Yang , Haiyan Wang
{"title":"Reciprocal enhancement of iodine and manganese redox kinetics towards high-performance rechargeable zinc-iodine-manganese hybrid batteries","authors":"Yanchun Sun ,&nbsp;Xiang Li ,&nbsp;Rihui Li ,&nbsp;Jiali Shou ,&nbsp;Zhiyao Sun ,&nbsp;Jian Yang ,&nbsp;Haiyan Wang","doi":"10.1016/j.jechem.2025.06.009","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous Zn-I<sub>2</sub>-Mn hybrid batteries demonstrate enhanced capacity, superior redox reaction kinetics, and prolonged cycle life compared to their Zn-I<sub>2</sub> and Zn-Mn counterparts, making them promising candidates for grid-scale energy storage. Nevertheless, challenges remain in developing multifunctional positive electrode materials and elucidating the mechanistic synergy governing iodine and manganese redox reactions. Herein, we present a high-performance free-standing electrode composed of birnessite (KMnO) nanosheet arrays in situ grown on carbon cloth (CC@KMnO) for constructing a Zn-I<sub>2</sub>-Mn hybrid battery. Combined theoretical studies and in situ characterizations reveal that CC@KMnO enhances iodine species adsorption, lowers the Gibbs free energy change for iodine reduction, and significantly accelerates I<sup>−</sup>/I<sub>3</sub><sup>−</sup>/I<sub>5</sub><sup>−</sup> redox kinetics while suppressing polyiodide shuttling and corrosion effects. Synchronously, the ZnI<sub>2</sub> electrolyte facilitates the dissolution of residual and exfoliated KMnO, thereby improving manganese redox reaction kinetics, reversibility, and enhancing cycling stability. Leveraging this mutually reinforcing effect, the Zn-I<sub>2</sub>-Mn hybrid battery achieves an impressive areal capacity of 2.02 mAh cm<sup>−2</sup> and maintains long-term durability over 3600 cycles at 2 mA cm<sup>−2</sup>. This work provides valuable insights into designing efficient and durable hybrid energy storage systems.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"109 ","pages":"Pages 662-670"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625004760","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-I2-Mn hybrid batteries demonstrate enhanced capacity, superior redox reaction kinetics, and prolonged cycle life compared to their Zn-I2 and Zn-Mn counterparts, making them promising candidates for grid-scale energy storage. Nevertheless, challenges remain in developing multifunctional positive electrode materials and elucidating the mechanistic synergy governing iodine and manganese redox reactions. Herein, we present a high-performance free-standing electrode composed of birnessite (KMnO) nanosheet arrays in situ grown on carbon cloth (CC@KMnO) for constructing a Zn-I2-Mn hybrid battery. Combined theoretical studies and in situ characterizations reveal that CC@KMnO enhances iodine species adsorption, lowers the Gibbs free energy change for iodine reduction, and significantly accelerates I/I3/I5 redox kinetics while suppressing polyiodide shuttling and corrosion effects. Synchronously, the ZnI2 electrolyte facilitates the dissolution of residual and exfoliated KMnO, thereby improving manganese redox reaction kinetics, reversibility, and enhancing cycling stability. Leveraging this mutually reinforcing effect, the Zn-I2-Mn hybrid battery achieves an impressive areal capacity of 2.02 mAh cm−2 and maintains long-term durability over 3600 cycles at 2 mA cm−2. This work provides valuable insights into designing efficient and durable hybrid energy storage systems.

Abstract Image

高性能可充电锌-碘-锰混合电池中碘和锰氧化还原动力学的相互增强
与Zn-I2和Zn-Mn相比,Zn-I2- mn水溶液混合电池具有更强的容量,更优越的氧化还原反应动力学和更长的循环寿命,使其成为电网规模储能的有希望的候选者。然而,在开发多功能正极材料和阐明控制碘和锰氧化还原反应的机制协同作用方面仍然存在挑战。在此,我们提出了一种高性能的独立电极,由原位生长在碳布上的铋矿(KMnO)纳米片阵列组成(CC@KMnO),用于构建Zn-I2-Mn混合电池。结合理论研究和原位表征表明,CC@KMnO增强了碘的吸附,降低了碘还原的吉布斯自由能变化,显著加快了I−/I3−/I5−氧化还原动力学,同时抑制了多碘化物的穿梭和腐蚀效应。同时,二氧化钛电解质促进了残余和脱落的KMnO的溶解,从而提高了锰氧化还原反应的动力学和可逆性,增强了循环稳定性。利用这种相互增强的效应,锌- i2 - mn混合电池获得了令人印象深刻的2.02 mAh cm - 2的面容量,并在2 mA cm - 2下保持超过3600次循环的长期耐用性。这项工作为设计高效耐用的混合储能系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信