Zhaochen Guo , Boyan Liu , Kang Wan , Peng Chen , Hongjing Wu , Songcan Wang
{"title":"用于高效、耐用钙钛矿太阳能电池的多齿配体修饰氧化铟锡电极","authors":"Zhaochen Guo , Boyan Liu , Kang Wan , Peng Chen , Hongjing Wu , Songcan Wang","doi":"10.1016/j.jechem.2025.05.064","DOIUrl":null,"url":null,"abstract":"<div><div>As commercial electron transport materials for perovskite solar cells (PSCs), pre-synthesized tin oxide (SnO<sub>2</sub>) nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions. The formed micro-size SnO<sub>2</sub> aggregates on the planar indium tin oxide (ITO) substrate not only create energy disorder to impair interfacial charge transfer but also hampers the growth of perovskite crystals, deteriorating the photovoltaic performance and device lifespan of PSCs. Here, a multidentate ligand of 1,2-cyclohexanedinitrilotetraacetic acid (CDTA) is developed to modify the surface chemistry of ITO substrates, facilitating the formation of pinhole-free and uniform SnO<sub>2</sub> electron transport layers for the crystallization of high-quality perovskite films. Moreover, the surface CDTA ligands lift the work function of ITO from 4.68 to 4.12 eV, enabling interfacial band alignment modification to improve the electron extraction from the ITO/SnO<sub>2</sub> interface. As a result, the CDTA-modified PSCs exhibit a significantly enhanced PCE of 24.67% and much prolonged device lifespan, retaining 91.3% and 92.8% of the initial PCEs under 2,000 h dark storage and after 500 h under one-sun illumination in nitrogen, respectively. This work demonstrates a simple yet efficient interfacial engineering strategy for the design of efficient and durable PSCs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"109 ","pages":"Pages 550-557"},"PeriodicalIF":13.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidentate ligand-decorated indium tin oxide electrodes for efficient and durable perovskite solar cells\",\"authors\":\"Zhaochen Guo , Boyan Liu , Kang Wan , Peng Chen , Hongjing Wu , Songcan Wang\",\"doi\":\"10.1016/j.jechem.2025.05.064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As commercial electron transport materials for perovskite solar cells (PSCs), pre-synthesized tin oxide (SnO<sub>2</sub>) nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions. The formed micro-size SnO<sub>2</sub> aggregates on the planar indium tin oxide (ITO) substrate not only create energy disorder to impair interfacial charge transfer but also hampers the growth of perovskite crystals, deteriorating the photovoltaic performance and device lifespan of PSCs. Here, a multidentate ligand of 1,2-cyclohexanedinitrilotetraacetic acid (CDTA) is developed to modify the surface chemistry of ITO substrates, facilitating the formation of pinhole-free and uniform SnO<sub>2</sub> electron transport layers for the crystallization of high-quality perovskite films. Moreover, the surface CDTA ligands lift the work function of ITO from 4.68 to 4.12 eV, enabling interfacial band alignment modification to improve the electron extraction from the ITO/SnO<sub>2</sub> interface. As a result, the CDTA-modified PSCs exhibit a significantly enhanced PCE of 24.67% and much prolonged device lifespan, retaining 91.3% and 92.8% of the initial PCEs under 2,000 h dark storage and after 500 h under one-sun illumination in nitrogen, respectively. This work demonstrates a simple yet efficient interfacial engineering strategy for the design of efficient and durable PSCs.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"109 \",\"pages\":\"Pages 550-557\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209549562500470X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562500470X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
Multidentate ligand-decorated indium tin oxide electrodes for efficient and durable perovskite solar cells
As commercial electron transport materials for perovskite solar cells (PSCs), pre-synthesized tin oxide (SnO2) nanoparticles suffer from colloidal agglomeration and inhomogeneous size distribution in aqueous solutions. The formed micro-size SnO2 aggregates on the planar indium tin oxide (ITO) substrate not only create energy disorder to impair interfacial charge transfer but also hampers the growth of perovskite crystals, deteriorating the photovoltaic performance and device lifespan of PSCs. Here, a multidentate ligand of 1,2-cyclohexanedinitrilotetraacetic acid (CDTA) is developed to modify the surface chemistry of ITO substrates, facilitating the formation of pinhole-free and uniform SnO2 electron transport layers for the crystallization of high-quality perovskite films. Moreover, the surface CDTA ligands lift the work function of ITO from 4.68 to 4.12 eV, enabling interfacial band alignment modification to improve the electron extraction from the ITO/SnO2 interface. As a result, the CDTA-modified PSCs exhibit a significantly enhanced PCE of 24.67% and much prolonged device lifespan, retaining 91.3% and 92.8% of the initial PCEs under 2,000 h dark storage and after 500 h under one-sun illumination in nitrogen, respectively. This work demonstrates a simple yet efficient interfacial engineering strategy for the design of efficient and durable PSCs.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy