中熵诱导原位尖晶石相形成稳定的无钴富锂正极材料

IF 14.9 1区 化学 Q1 Energy
Jiaming Miao , Qile Duan , Piluan Li , Haonan Li , Liangwei Liu , Yi Xiao , Jinyang Liu , Yue Lin , Xiang Ding , Lili Han
{"title":"中熵诱导原位尖晶石相形成稳定的无钴富锂正极材料","authors":"Jiaming Miao ,&nbsp;Qile Duan ,&nbsp;Piluan Li ,&nbsp;Haonan Li ,&nbsp;Liangwei Liu ,&nbsp;Yi Xiao ,&nbsp;Jinyang Liu ,&nbsp;Yue Lin ,&nbsp;Xiang Ding ,&nbsp;Lili Han","doi":"10.1016/j.jechem.2025.08.031","DOIUrl":null,"url":null,"abstract":"<div><div>Co-free Li-rich Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub> (LR) cathode shows the highest working capacity that can be applied to high-energy density Li-ion batteries (LIBs). However, poor cycle stability and voltage decay caused by phase transition are always hindering its further development. Herein, a novel medium-entropy Li-rich Mn-based cathode material (LRMEF) was synthesized via a simple sol-gel method. The introduction of multivalent ions (Al<sup>3+</sup>/Cu<sup>2+</sup> doping at Mn sites and F<sup>−</sup> doping at O sites) effectively mitigates the Jahn-Teller distortion of Mn ions and suppresses oxygen release. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images confirm that this synergistic doping strategy induces the in-situ formation of an approximately 3 nm-thick spinel surface layer, which significantly enhances structural stability and ion diffusion kinetics. Besides, a series of in-situ/ex-situ characterization methods and density functional theory (DFT) calculations have been carried out to fundamentally shed light on the optimized structure-activity relationship and reaction mechanism. As a result, the LR material with entropy regulation and anion doping exhibits excellent cycling stability (189.2 mAh g<sup>−1</sup> at 1 C with 84 % capacity retention after 300 cycles), rate performance (164.1 mAh g<sup>−1</sup> at 5 C), and voltage retention (82.7 % at 1 C after 300 cycles), demonstrating great application prospects in future high-energy-density LIBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 294-305"},"PeriodicalIF":14.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medium-entropy-induced in-situ surface spinel phase towards stable Co-free Li-rich cathode material\",\"authors\":\"Jiaming Miao ,&nbsp;Qile Duan ,&nbsp;Piluan Li ,&nbsp;Haonan Li ,&nbsp;Liangwei Liu ,&nbsp;Yi Xiao ,&nbsp;Jinyang Liu ,&nbsp;Yue Lin ,&nbsp;Xiang Ding ,&nbsp;Lili Han\",\"doi\":\"10.1016/j.jechem.2025.08.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Co-free Li-rich Li<sub>1.2</sub>Ni<sub>0.2</sub>Mn<sub>0.6</sub>O<sub>2</sub> (LR) cathode shows the highest working capacity that can be applied to high-energy density Li-ion batteries (LIBs). However, poor cycle stability and voltage decay caused by phase transition are always hindering its further development. Herein, a novel medium-entropy Li-rich Mn-based cathode material (LRMEF) was synthesized via a simple sol-gel method. The introduction of multivalent ions (Al<sup>3+</sup>/Cu<sup>2+</sup> doping at Mn sites and F<sup>−</sup> doping at O sites) effectively mitigates the Jahn-Teller distortion of Mn ions and suppresses oxygen release. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images confirm that this synergistic doping strategy induces the in-situ formation of an approximately 3 nm-thick spinel surface layer, which significantly enhances structural stability and ion diffusion kinetics. Besides, a series of in-situ/ex-situ characterization methods and density functional theory (DFT) calculations have been carried out to fundamentally shed light on the optimized structure-activity relationship and reaction mechanism. As a result, the LR material with entropy regulation and anion doping exhibits excellent cycling stability (189.2 mAh g<sup>−1</sup> at 1 C with 84 % capacity retention after 300 cycles), rate performance (164.1 mAh g<sup>−1</sup> at 5 C), and voltage retention (82.7 % at 1 C after 300 cycles), demonstrating great application prospects in future high-energy-density LIBs.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"112 \",\"pages\":\"Pages 294-305\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495625006898\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625006898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

无co -rich li - Li1.2Ni0.2Mn0.6O2 (LR)阴极具有最高的工作容量,可应用于高能密度锂离子电池(LIBs)。然而,周期稳定性差和相变引起的电压衰减一直阻碍着其进一步发展。本文采用简单的溶胶-凝胶法制备了一种新型中熵富锂锰基正极材料。多价离子的引入(Al3+/Cu2+掺杂在Mn位点,F -掺杂在O位点)有效地减轻了Mn离子的Jahn-Teller畸变,抑制了氧的释放。高角度环形暗场扫描透射电子显微镜(HAADF-STEM)图像证实,这种协同掺杂策略诱导原位形成约3nm厚的尖晶石表面层,显著提高了结构稳定性和离子扩散动力学。此外,通过一系列原位/非原位表征方法和密度泛函理论(DFT)计算,从根本上揭示了优化后的构效关系和反应机理。结果表明,经过熵调节和阴离子掺杂的LR材料具有优异的循环稳定性(1℃下189.2 mAh g−1,300次循环后容量保持率84%)、倍率性能(5℃下164.1 mAh g−1)和电压保持率(300次循环后1℃下82.7%),在未来高能量密度锂离子电池中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Medium-entropy-induced in-situ surface spinel phase towards stable Co-free Li-rich cathode material

Medium-entropy-induced in-situ surface spinel phase towards stable Co-free Li-rich cathode material
Co-free Li-rich Li1.2Ni0.2Mn0.6O2 (LR) cathode shows the highest working capacity that can be applied to high-energy density Li-ion batteries (LIBs). However, poor cycle stability and voltage decay caused by phase transition are always hindering its further development. Herein, a novel medium-entropy Li-rich Mn-based cathode material (LRMEF) was synthesized via a simple sol-gel method. The introduction of multivalent ions (Al3+/Cu2+ doping at Mn sites and F doping at O sites) effectively mitigates the Jahn-Teller distortion of Mn ions and suppresses oxygen release. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images confirm that this synergistic doping strategy induces the in-situ formation of an approximately 3 nm-thick spinel surface layer, which significantly enhances structural stability and ion diffusion kinetics. Besides, a series of in-situ/ex-situ characterization methods and density functional theory (DFT) calculations have been carried out to fundamentally shed light on the optimized structure-activity relationship and reaction mechanism. As a result, the LR material with entropy regulation and anion doping exhibits excellent cycling stability (189.2 mAh g−1 at 1 C with 84 % capacity retention after 300 cycles), rate performance (164.1 mAh g−1 at 5 C), and voltage retention (82.7 % at 1 C after 300 cycles), demonstrating great application prospects in future high-energy-density LIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信