Journal of biomedical materials research. Part B, Applied biomaterials最新文献

筛选
英文 中文
In Vivo Evaluation of Thermally Drawn Biodegradable Optical Fibers as Brain Implants 热拉伸可生物降解光纤作为脑植入物的体内评价
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-18 DOI: 10.1002/jbm.b.35549
Parinaz Abdollahian, Kunyang Sui, Guanghui Li, Jiachen Wang, Cuiling Zhang, Yazhou Wang, Rune W. Berg, Marcello Meneghetti, Christos Markos
{"title":"In Vivo Evaluation of Thermally Drawn Biodegradable Optical Fibers as Brain Implants","authors":"Parinaz Abdollahian,&nbsp;Kunyang Sui,&nbsp;Guanghui Li,&nbsp;Jiachen Wang,&nbsp;Cuiling Zhang,&nbsp;Yazhou Wang,&nbsp;Rune W. Berg,&nbsp;Marcello Meneghetti,&nbsp;Christos Markos","doi":"10.1002/jbm.b.35549","DOIUrl":"https://doi.org/10.1002/jbm.b.35549","url":null,"abstract":"<p>Optical fiber technology plays a critical role in modern neuroscience towards understanding the complex neuronal dynamics within the nervous system. In this study, we manufactured and characterized amorphous thermally drawn poly D, L-lactic acid (PDLLA) biodegradable optical fibers in different diameters. These optical fibers were then implanted into the lateral posterior region of the mouse brain for four months, allowing us to assess their degradation characteristics. The gradual dissolution of the implanted PDLLA optical fibers in the brain was confirmed by optical, photoacoustic, and scanning electron microscopy (SEM), light propagation characteristics, and molecular weight measurements. The results indicate that the degradation rate of the biodegradable optical fiber was mainly pronounced during the first week. After four months, degradation led to the formation of micropores on the surface of the implanted fiber within the gray matter region of the brain. We believe that the PDLLA biodegradable optical fiber developed in this study constitutes a promising candidate for further functionalization and development of next-generation biocompatible, soft, and biodegradable bi-directional neural interfaces.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of Bulk RNA Sequencing for the Evaluation of Keratin Nanomaterials as a Coating for Percutaneous Devices 利用大量RNA测序评价角蛋白纳米材料作为经皮装置涂层
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-17 DOI: 10.1002/jbm.b.35551
Andrew Miller, James Peter Beck, Alexis White, Jayant Agarwal, Kent N. Bachus, Sujee Jeyapalina, Mark Van Dyke
{"title":"Utilization of Bulk RNA Sequencing for the Evaluation of Keratin Nanomaterials as a Coating for Percutaneous Devices","authors":"Andrew Miller,&nbsp;James Peter Beck,&nbsp;Alexis White,&nbsp;Jayant Agarwal,&nbsp;Kent N. Bachus,&nbsp;Sujee Jeyapalina,&nbsp;Mark Van Dyke","doi":"10.1002/jbm.b.35551","DOIUrl":"https://doi.org/10.1002/jbm.b.35551","url":null,"abstract":"<p>Despite advances in the design and protocols for maintaining the skin/device interface around percutaneous devices (PDs), no current strategy ensures the permanent attachment of peri-implant epithelial tissue to the device surface. Based on preliminary data, we hypothesized that PDs coated with keratin nanomaterials, resembling the fingernail-nailbed interface, could provide a biochemically mediated surface that enhances epidermal cell adhesion and differentiation. To test this hypothesis, 15 Yucatan miniature pigs were each implanted with six percutaneous titanium devices, comprising three porous and three smooth devices, both with and without keratin coatings (Kerateine [iKNT] and Keratose [gKOS]). The pigs were sacrificed at 4, 8, and 16 weeks post-implantation. The devices and surrounding tissues were harvested and analyzed using histological and RNA sequencing techniques. Compared to smooth peri-implant tissue, porous peri-implant tissue showed a significant decrease in epithelial downgrowth, fibrous capsule thickness, and infection rates, alongside a significant upregulation of multiple immune marker genes, including IL12B. At the 16-week period, gKOS-coated surfaces demonstrated a more favorable wound healing response than iKTN-coated devices, with a reduction in granulation tissue area and a significant upregulation of several keratin genes related to differentiation. Among the combinations of surface types and coatings studied, the porous gKOS-coated device produced the most favorable wound healing response.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 3","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35551","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process-Dependent Variations in the Proliferation of Myoblasts, Fibroblasts and Chondrocytes on Laser-Sintered Polypropylene 激光烧结聚丙烯上成肌细胞、成纤维细胞和软骨细胞增殖的过程依赖性变化
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-08 DOI: 10.1002/jbm.b.35546
R. Detsch, S. Schlicht, Q. Nawaz, A. R. Boccaccini, D. Drummer
{"title":"Process-Dependent Variations in the Proliferation of Myoblasts, Fibroblasts and Chondrocytes on Laser-Sintered Polypropylene","authors":"R. Detsch,&nbsp;S. Schlicht,&nbsp;Q. Nawaz,&nbsp;A. R. Boccaccini,&nbsp;D. Drummer","doi":"10.1002/jbm.b.35546","DOIUrl":"https://doi.org/10.1002/jbm.b.35546","url":null,"abstract":"<p>Additively manufactured polyolefins find broad applications in medical engineering, enabling the manufacturing of patient-specific geometries. For investigating the influence of processing conditions of laser sintered locally macroporous polypropylene substrates, the response of myoblasts, chondrocytes, and fibroblasts has been characterized in this study. An influence of the applied manufacturing parameters on the attachment and viability of the investigated cells is observed, showing the effect of the superficial pore topology on the attachment and the spreading of cells. The viability and attachment of fibroblasts and chondrocytes could be improved by reducing the thermal exposure during the processing step of the dense base part, associated with increased superficial porosity and the corresponding increase of the surface area. The applied additive manufacturing process of macroporous structures influences emerging cell morphologies, leading to an extended morphological expression of chondrocytes and the overgrowth of small pores by fibroblasts. This indicates an improvement in superficial cell adhesion due to larger pores. These findings indicate the significance of the processing conditions in laser sintering of polypropylene on the cell response through the optimization of processing parameters and the attachment of an open-cell pore structure.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143370082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gold Nanorods (GNRs): A Golden Nano Compass to Navigate Breast Cancer by Multimodal Imaging Approaches 金纳米棒(GNRs):通过多模态成像方法导航乳腺癌的金纳米指南针
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-07 DOI: 10.1002/jbm.b.35543
Sanjana Varma, Aagam Lalit Bamb, Niladri Haldar, Virendra Gajbhiye, Dinesh Amalnerkar, Bhushan Pradosh Chaudhari
{"title":"Gold Nanorods (GNRs): A Golden Nano Compass to Navigate Breast Cancer by Multimodal Imaging Approaches","authors":"Sanjana Varma,&nbsp;Aagam Lalit Bamb,&nbsp;Niladri Haldar,&nbsp;Virendra Gajbhiye,&nbsp;Dinesh Amalnerkar,&nbsp;Bhushan Pradosh Chaudhari","doi":"10.1002/jbm.b.35543","DOIUrl":"https://doi.org/10.1002/jbm.b.35543","url":null,"abstract":"<div>\u0000 \u0000 <p>The ongoing rise in the incidences of breast cancer cases has concerned medical and scientific personnel around the world. Adequate treatment of cancer predominantly relies on the pertinent diagnosis of the type of cancer as well as other molecular and cellular details at the initial stage only. Surprisingly, up till now, there is no single, self-reliant imaging modality that helps to systematically find out the anatomical and functional events taking place inside the body. This resulted in the advent of the multimodal imaging concept, which encompasses the integration of complementary imaging modalities by designing multimodal imaging probes. Gold nanorods (GNRs) are extremely popular and effective nanoparticles for multimodal bioimaging due to their unique properties. Researchers have designed varieties of stable and biocompatible GNR-based probes for targeted and nontargeted multimodal imaging of breast cancer. However, there is a lack of investigations on the in vivo fate and the toxicity of GNRs. Thus, their preclinical to clinical translation can be attained by comprehensively determining the in vivo fate and toxicity of GNRs. The review provides details about the GNRs-based nanoprobes fabricated so far for breast cancer imaging, which, by consequent studies, can be taken up to clinical usage.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Nitrogen and Hydrogen Plasma Treatments on a Mg-2Y-1Zn-1Mn Resorbable Alloy 氮和氢等离子体处理对Mg-2Y-1Zn-1Mn可吸收合金的影响
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-06 DOI: 10.1002/jbm.b.35542
Masoud Shekargoftar, Samira Ravanbakhsh, Vinicius Sales de Oliveira, Carlo Paternoster, Pascale Chevallier, Frank Witte, Andranik Sarkissian, Diego Mantovani
{"title":"Effects of Nitrogen and Hydrogen Plasma Treatments on a Mg-2Y-1Zn-1Mn Resorbable Alloy","authors":"Masoud Shekargoftar,&nbsp;Samira Ravanbakhsh,&nbsp;Vinicius Sales de Oliveira,&nbsp;Carlo Paternoster,&nbsp;Pascale Chevallier,&nbsp;Frank Witte,&nbsp;Andranik Sarkissian,&nbsp;Diego Mantovani","doi":"10.1002/jbm.b.35542","DOIUrl":"10.1002/jbm.b.35542","url":null,"abstract":"<p>Mg alloys have recently been investigated and optimized for the development of biodegradable implants for orthopedic, dental, vascular, and other applications. However, their rapid degradation in a physiological environment remains the main obstacle to their development. In this work, the effects of nitrogen and hydrogen plasma treatments on the surface properties and corrosion behavior of an Mg-2Y-1Zn-1Mn (WZM211) alloy were investigated. Plasma treatment effectively modified the surface of a WZM211 alloy by removing the original oxide layer, followed by the formation of a new surface layer with controlled composition, thickness, and wettability. The water contact angle decreased from 100° to 17° after nitrogen plasma and to 45° after hydrogen plasma treatment. The nitrogen plasma treatment, shortly N-Plasma, resulted in the lowest corrosion rate (CR<sub>N</sub> = 0.038 ± 0.010 mm/y) if compared with the hydrogen plasma treatment, shortly H-Plasma (CR<sub>H</sub> = 0.044 ± 0.003 mm/y) and untreated samples (0.233 ± 0.097 mm/y). The results demonstrate the potential of nitrogen and hydrogen plasma treatment for the development of resorbable Mg-based implants.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35542","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143255706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical Characterization of Hyaluronic Acid-Methylcellulose Semi-Gels for Mitochondria Transplantation 用于线粒体移植的透明质酸-甲基纤维素半凝胶的物理化学特性。
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-05 DOI: 10.1002/jbm.b.35537
A. Jamie Ahmed, Zoe A. Gallegos, Md Abu Monsur Dinar, Patrick G. Sullivan, Jason E. DeRouchey, Samir P. Patel, Alexander G. Rabchevsky, Thomas D. Dziubla
{"title":"Physicochemical Characterization of Hyaluronic Acid-Methylcellulose Semi-Gels for Mitochondria Transplantation","authors":"A. Jamie Ahmed,&nbsp;Zoe A. Gallegos,&nbsp;Md Abu Monsur Dinar,&nbsp;Patrick G. Sullivan,&nbsp;Jason E. DeRouchey,&nbsp;Samir P. Patel,&nbsp;Alexander G. Rabchevsky,&nbsp;Thomas D. Dziubla","doi":"10.1002/jbm.b.35537","DOIUrl":"10.1002/jbm.b.35537","url":null,"abstract":"<div>\u0000 \u0000 <p>Traumatic spinal cord injury (SCI) presents a significant medical challenge due to its intricate nature and treatment complexities. SCI can cause physical impairments by affecting neural and motor functions as well as initiating a series of pathophysiological events exacerbating the initial trauma. Leakage from ruptured neurons and vessels disrupt ionic balance and induces excitotoxicity, leading to progressive cellular degeneration. Introducing mitochondria to the SCI lesion has shown potential in attenuating secondary injury. Mitochondria transplantation improves cellular bioenergetics and reduces concentration of reactive oxygen species achieving homeostasis and neuroprotection. Nonetheless, keeping mitochondria viable outside cell environment for a time longer than a few minutes proves to be challenging. Additionally, localized delivery to the injury site has also been limited by other factors including flow rate of cerebrospinal fluid that washes away mobilized organelle from the compromised tissue site. Previously we showed that using hyaluronic acid-methylcellulose semi-gels (HAMC) as a biocompatible, erodible thermogelling delivery vehicle helped to overcome some of these challenges. HAMC allows for controlled release at and around the injury site, utilizing the reverse thermogelling property of MC. Sustained release of mitochondria at slower rate can increase their uptake in spinal tissue. To better optimize the semi-gel delivery of mitochondria requires a more complete understanding of the physicochemical properties of the HAMC semi-gels. We have used ultraviolet–visible spectroscopy to measure optical density of HAMC semi-gels for different HA to MC ratios and examine the temperature dependent gelation properties above their low critical solution temperature (LCST). The viscosity and degree of crystallinity of the resulting HAMC semi-gels were also assessed. Semi-gel erosion and mitochondrial release over time were studied using a fluorescence microplate reader. Lastly, seahorse assay was used to study released mitochondria respiration and viability after incubation in HAMC semi-gel.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelet-Rich Plasma Loaded Alginate-Based Injectable Hydrogel for Meniscal Tear Repair: In Vivo Evaluation in Lapine Model 富血小板血浆负载海藻酸盐可注射水凝胶用于半月板撕裂修复:Lapine模型的体内评估。
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-02-01 DOI: 10.1002/jbm.b.35541
Rajalekshmi Resmi, Jayasree Parvathy, Sudha Anjali, Natarajan Amrita, Arun Jyothi, V. S. Harikrishnan, Annie John, Roy Joseph
{"title":"Platelet-Rich Plasma Loaded Alginate-Based Injectable Hydrogel for Meniscal Tear Repair: In Vivo Evaluation in Lapine Model","authors":"Rajalekshmi Resmi,&nbsp;Jayasree Parvathy,&nbsp;Sudha Anjali,&nbsp;Natarajan Amrita,&nbsp;Arun Jyothi,&nbsp;V. S. Harikrishnan,&nbsp;Annie John,&nbsp;Roy Joseph","doi":"10.1002/jbm.b.35541","DOIUrl":"10.1002/jbm.b.35541","url":null,"abstract":"<div>\u0000 \u0000 <p>Platelet-rich plasma (PRP) has been employed for orthopedic applications for decades due to the abundance of bioactive cues/growth factors that ameliorate the proliferation and migration of relevant cells involved in tissue repair/regeneration. In this work, PRP was incorporated into injectable compositions of alginate-based hydrogel and evaluated in vitro and in vivo. In vitro tests revealed that PRP addition promoted cell adhesion, cell proliferation, and distribution of seeded fibrochondrocytes on the hydrogel. Further, the DNA quantification and sGAG estimation confirmed the production of fibrocartilage-specific extracellular matrix, predominantly type 1 collagen and sGAG. For in vivo evaluation, tears were created surgically in the rabbit menisci and were filled with injectable hydrogel. Sham and hydrogel without PRP were used as controls. Histopathological evaluation after 3 months of implantation revealed that the healing was partial for sham control, but complete for hydrogel without PRP. The hydrogel served as the scaffold for fibrocartilage tissue regeneration. On the other hand, PRP-incorporated hydrogel showed good healing with low signs of inflammation as evidenced by histology and biochemical content. The healing was complete, and the nature of the regenerated tissues was very close to native tissue indicating that alginate-based hydrogel is a promising candidate for meniscal tissue repair.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosafety and Efficacy Studies of Colchicine-Encapsulated Liposomes for Ocular Inflammatory Diseases 秋水仙碱包封脂质体治疗眼部炎症性疾病的生物安全性和有效性研究。
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-01-31 DOI: 10.1002/jbm.b.35540
Lu Yuan, Daohuan Kang, Liping Teng, Nan Chen, Jiao Zhan, Rui Yu, Yong Wang, Bin Lu
{"title":"Biosafety and Efficacy Studies of Colchicine-Encapsulated Liposomes for Ocular Inflammatory Diseases","authors":"Lu Yuan,&nbsp;Daohuan Kang,&nbsp;Liping Teng,&nbsp;Nan Chen,&nbsp;Jiao Zhan,&nbsp;Rui Yu,&nbsp;Yong Wang,&nbsp;Bin Lu","doi":"10.1002/jbm.b.35540","DOIUrl":"10.1002/jbm.b.35540","url":null,"abstract":"<div>\u0000 \u0000 <p>Inflammation is a critical component in the progression of various ocular diseases, such as age-related macular degeneration, diabetic retinopathy, and uveitis, leading to significant vision loss. Colchicine has been used for treating gout with its anti-inflammatory effect. However, free colchicine demonstrated cytotoxicity to ocular cells and cannot directly be used for eye disease. Thus, this study introduces, for the first time, the development and use of colchicine-encapsulated liposomes as a novel therapeutic approach for managing inflammation-driven ocular conditions. The encapsulation of colchicine within liposomes represents a significant innovation, aimed at enhancing biocompatibility and therapeutic efficacy while minimizing cytotoxic effects associated with free colchicine. Our research synthesized colchicine-loaded liposomes and assessed their therapeutic impact on human monocytes, macrophages, and retinal pigment epithelium (RPE) cells in an inflammatory environment. The findings reveal a groundbreaking improvement in treatment strategies, with a substantial reduction in TNF-alpha-induced reactive oxygen species (ROS) and nitric oxide (NO) production in RPE cells. Moreover, the colchicine-loaded liposomes significantly inhibited the proliferation and ROS production in activated monocytes and macrophages and effectively decreased interleukin (IL)-1β and IL-6 secretion, highlighting their strong anti-inflammatory properties and showed slightly better suppression of these two cytokines than dexamethasone-liposomes.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Characterization of Amniotic-Based Scaffolds Containing Silk Fibroin and Sodium Alginate Nanofibers 含有丝素和海藻酸钠纳米纤维的羊膜支架的力学特性。
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-01-31 DOI: 10.1002/jbm.b.35539
Hassan Beheshti Seresht, Parisa Akhlaghi, Sina Ashouri Sharafshadeh, Mohamad Sadegh Aghajanzadeh, Rouhollah Mehdinavaz Aghdam
{"title":"Mechanical Characterization of Amniotic-Based Scaffolds Containing Silk Fibroin and Sodium Alginate Nanofibers","authors":"Hassan Beheshti Seresht,&nbsp;Parisa Akhlaghi,&nbsp;Sina Ashouri Sharafshadeh,&nbsp;Mohamad Sadegh Aghajanzadeh,&nbsp;Rouhollah Mehdinavaz Aghdam","doi":"10.1002/jbm.b.35539","DOIUrl":"10.1002/jbm.b.35539","url":null,"abstract":"<div>\u0000 \u0000 <p>Due to its availability and biocompatibility, the human amniotic membrane (hAM) is being investigated by a large number of researchers with the goal of gaining a better understanding of the materials' mechanical behavior and structural integrity and optimizing them for various Tissue Engineering applications. In this research, biopolymers sodium alginate (SA) and silk fibroin (SF) were electrospun onto a decellularized hAM, resulting in two types of hybrid scaffolds: hAM/SF and hAM/SF/SA. The mechanical characteristics of these nanofibers were then analyzed to guide scaffold optimization for applications using these materials. Two mechanical experiments were conducted; uniaxial tension in both wet and dry configurations, and stress-relaxation tests. According to the results, the mechanical characteristics of the manufactured materials were significantly different from those of the amniotic membrane, indicating the effect of novel materials. Tensile testing in the dry condition revealed a small variation in stiffness between the amniotic membrane and the new nanofibers. Simultaneously, a significant reduction in maximum tension and stretch was observed in the aforementioned materials compared to amniotic matrices. In addition, tensile testing in a wet configuration indicated that the new nanofibers are stronger and stiffer than amniotic membrane but less stretchy, owing to the improved mechanical properties of SF, which can be considered as the membrane's or tissue's load-bearer. The addition of SF increases the stiffness and durability of the fabricated scaffold. In addition, when compared to the amniotic membrane, relaxation tests revealed significant differences in peak tension rather than equilibrium state for the novel nanofibers in wet conditions. The results of this investigation will enable us to have a comprehensive grasp of the mechanical properties of freshly created wound dressings.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cutting-Edge Multilayer Nanofiber Wound Dressing: Design, Synthesis, and Investigation for Enhanced Wound Healing In Vitro and In Vivo 一种尖端的多层纳米纤维伤口敷料:体外和体内增强伤口愈合的设计、合成和研究。
IF 3.2 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-01-31 DOI: 10.1002/jbm.b.35544
Irem Mukaddes Bilgiseven, Ilyas Deveci, Kemal Kismet, Serdar Karakurt
{"title":"A Cutting-Edge Multilayer Nanofiber Wound Dressing: Design, Synthesis, and Investigation for Enhanced Wound Healing In Vitro and In Vivo","authors":"Irem Mukaddes Bilgiseven,&nbsp;Ilyas Deveci,&nbsp;Kemal Kismet,&nbsp;Serdar Karakurt","doi":"10.1002/jbm.b.35544","DOIUrl":"10.1002/jbm.b.35544","url":null,"abstract":"<div>\u0000 \u0000 <p>Wounds, disruptions in normal anatomy, are classified as acute or chronic. The choice of wound treatment relies significantly on dressing materials. Electrospun nanofibrous materials offer promising applications in wound healing, featuring a substantial surface area, close mimicry of the natural extracellular matrix, and adjustable water resistance, air permeability, and drug release. This research endeavors to formulate an innovative three-layered nanofibrous wound dressing using the electrospinning technique with the primary objectives of enhancing patient well-being, exhibiting antimicrobial characteristics, and expediting wound healing. The designed dressing comprises nanofibers of polyurethane (PU), quercetin (Q)-loaded polyethylene glycol (PEG), polyvinyl alcohol (PVA), and gelatin. Characterization of individual layers and the integrated wound dressing was conducted through SEM and FT-IR analyses. The efficacy of the nanofibrous wound dressing was assessed through in vitro human cell culture and in vivo rat wound models. The anti-toxic effects of nanofiber wound dressing on human epithelial and keratin cells have been proven. In vitro wound models in 24-well plates were utilized to assess the impact on wound healing rates. Photographic documentation of wound closure was performed at the different treatment hours, revealing complete closure of the wounds by the end of the 48th hour. Rats with 2 × 1 cm wounds were treated with the nanofibrous dressings, and wound healing progress was observed over a 14-day period. qRT-PCR was employed to analyze MMP-9, TIMP1, COL1A1, PDGFA, and VEGFC mRNA expressions. With its contemporary design surpassing existing treatments, the nanofiber wound dressing stands out for its wound-healing acceleration and antibacterial properties.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信