Journal of biomedical materials research. Part B, Applied biomaterials最新文献

筛选
英文 中文
Albumin suppresses oxidation of TiNb alloy in the simulated inflammatory environment 白蛋白可抑制模拟炎症环境中 TiNb 合金的氧化。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-27 DOI: 10.1002/jbm.b.35404
Agata Sotniczuk, Damian Kalita, Witold Chromiński, Magdalena Matczuk, Marcin Pisarek, Halina Garbacz
{"title":"Albumin suppresses oxidation of TiNb alloy in the simulated inflammatory environment","authors":"Agata Sotniczuk,&nbsp;Damian Kalita,&nbsp;Witold Chromiński,&nbsp;Magdalena Matczuk,&nbsp;Marcin Pisarek,&nbsp;Halina Garbacz","doi":"10.1002/jbm.b.35404","DOIUrl":"10.1002/jbm.b.35404","url":null,"abstract":"<p>Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti<span></span>6Al<span></span>4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti β-phase materials, such as Ti<span></span>Nb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of Ti<span></span>Nb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the Ti<span></span>Nb surface by a protein layer. Moreover, TEM studies revealed that H<sub>2</sub>O<sub>2</sub>-induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti<span></span>6Al<span></span>4V, the addition of albumin to the PBS + H<sub>2</sub>O<sub>2</sub> solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a Ti<span></span>Nb implant.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35404","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emulgel based on fish skin collagen-microalgae-silver increased neovascularization and re-epithelialization of full thickness burn in rats 基于鱼皮胶原-微藻-银的 Emulgel 增加了大鼠全厚度烧伤的新生血管和再上皮化。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-27 DOI: 10.1002/jbm.b.35399
Francisco Fábio Pereira de Souza, Igor Iuco Castro-Silva, Fábia Karine Andrade, Adriano Lincoln Albuquerque Mattos, Mirrael de Sousa Lopes, Wallady da Silva Barroso, Bartolomeu Warlene Silva de Souza, Men de Sá Moreira de Souza-Filho, André Luis Coelho da Silva
{"title":"Emulgel based on fish skin collagen-microalgae-silver increased neovascularization and re-epithelialization of full thickness burn in rats","authors":"Francisco Fábio Pereira de Souza,&nbsp;Igor Iuco Castro-Silva,&nbsp;Fábia Karine Andrade,&nbsp;Adriano Lincoln Albuquerque Mattos,&nbsp;Mirrael de Sousa Lopes,&nbsp;Wallady da Silva Barroso,&nbsp;Bartolomeu Warlene Silva de Souza,&nbsp;Men de Sá Moreira de Souza-Filho,&nbsp;André Luis Coelho da Silva","doi":"10.1002/jbm.b.35399","DOIUrl":"10.1002/jbm.b.35399","url":null,"abstract":"<p>Deep skin burn represents a global morbidity and mortality problem, and the limitation of topical treatment agents has motivated research to development new formulations capable of preventing infections and accelerating healing. The aim of this work was to develop and characterize an emulgel based on collagen (COL) and gelatin (GEL) extracted from fish skin associated with <i>Chlorella vulgaris</i> extract (CE) and silver nitrate (AgNO<sub>3</sub>). COL and GEL were characterized by physicochemical and thermal analyses; and CE by electrophoresis and its antioxidant capacity. Three emulgels formulations were developed: COL (0.5%) + GEL (2.5%) (E1), COL+GEL+CE (1%) (E2), and COL+GEL+CE + AgNO3 (0.1%) (E3). All formulations were characterized by physicochemical, rheology assays, and preclinical analyses: cytotoxicity (in vitro) and healing potential using a burn model in rats. COL and GEL showed typical physicochemical characteristics, and CE presented 1.3 mg/mL of proteins and antioxidant activity of 76%. Emulgels presented a coherent physicochemical profile and pseudoplastic behavior. Preclinical analysis showed concentration-dependent cytotoxicity against fibroblast and keratinocytes. In addition, all emulgels induced similar percentages of wound contraction and complete wound closure in 28 days. The histopathological analysis showed higher scores for polymorphonuclear cells to E1 and greater neovascularization and re-epithelialization to E3. Then, E3 formulation has potential to improve burn healing, although its use in a clinical setting requires further studies.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140293653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocurable extracellular matrix sealant for cessation of venous hemorrhage 用于终止静脉出血的光固化细胞外基质密封剂。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-23 DOI: 10.1002/jbm.b.35401
Luke E. Schepers, Brooke L. Martindale, Alycia G. Berman, Hannah L. Cebull, William Van Alstine, Sydney E. Hollingshead, Tyler Novak, Craig J. Goergen
{"title":"Photocurable extracellular matrix sealant for cessation of venous hemorrhage","authors":"Luke E. Schepers,&nbsp;Brooke L. Martindale,&nbsp;Alycia G. Berman,&nbsp;Hannah L. Cebull,&nbsp;William Van Alstine,&nbsp;Sydney E. Hollingshead,&nbsp;Tyler Novak,&nbsp;Craig J. Goergen","doi":"10.1002/jbm.b.35401","DOIUrl":"10.1002/jbm.b.35401","url":null,"abstract":"<p>Hemorrhage is the second leading cause of death in patients under 46 years of age in the United States. Cessation of hemorrhage prevents hemorrhagic shock and tissue hypoxia. Controlling the bleed via direct pressure or tourniquet is often the first line of defense, but long-term care requires staples, hemostatic agents, or sealants that seal the vessel and restore blood flow. Here, we compare a new photocurable extracellular matrix sealant (pcECM) with low, medium, and high crosslink density formulations to a commercially available fibrin-based sealant, TISSEEL®. pcECM has potential uses in surgical and remote settings due to room temperature storage conditions and fast preparation time. Here, we determine if pcECM sealant can stop venous hemorrhage in a murine model, adhere to the wound site <i>in vivo</i> throughout the wound-healing process, and has the mechanical properties necessary for stopping hemorrhage. Adjusting pcECM crosslinking density significantly affected viscosity, swelling, burst strength, tensile strength, and elasticity of the sealant. 3-Dimensional ultrasound volume segmentations showed pcECM degrades to 17 ± 8% of its initial implant volume by day 28. Initially, local hemodynamic changes were observed, but returned close to baseline levels by day 28. Acute inflammation was observed near the puncture site in pcECM implanted mice, and we observed inflammatory markers at the 14-day explant for both sealants. pcECM and fibrin sealant successfully sealed the vessel in all cases, and consistently degraded over 14–28 days. pcECM is a durable sealant with tunable mechanical properties and possible uses in hemorrhage control and other surgical procedures.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35401","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study 用于骨组织再生的聚乳酸/β-磷酸三钙复合材料的直接喷墨写入:概念验证研究。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-23 DOI: 10.1002/jbm.b.35402
Vasudev Vivekanand Nayak, Vijayavenkataraman Sanjairaj, Rakesh Kumar Behera, James E. Smay, Nikhil Gupta, Paulo G. Coelho, Lukasz Witek
{"title":"Direct inkjet writing of polylactic acid/β-tricalcium phosphate composites for bone tissue regeneration: A proof-of-concept study","authors":"Vasudev Vivekanand Nayak,&nbsp;Vijayavenkataraman Sanjairaj,&nbsp;Rakesh Kumar Behera,&nbsp;James E. Smay,&nbsp;Nikhil Gupta,&nbsp;Paulo G. Coelho,&nbsp;Lukasz Witek","doi":"10.1002/jbm.b.35402","DOIUrl":"10.1002/jbm.b.35402","url":null,"abstract":"<p>There is an ever-evolving need of customized, anatomic-specific grafting materials for bone regeneration. More specifically, biocompatible and osteoconductive materials, that may be configured dynamically to fit and fill defects, through the application of an external stimulus. The objective of this study was to establish a basis for the development of direct inkjet writing (DIW)-based shape memory polymer-ceramic composites for bone tissue regeneration applications and to establish material behavior under thermomechanical loading. Polymer-ceramic (polylactic acid [PLA]/β-tricalcium phosphate [β-TCP]) colloidal gels were prepared of different w/w ratios (90/10, 80/20, 70/30, 60/40, and 50/50) through polymer dissolution in acetone (15% w/v). Cytocompatibility was analyzed through Presto Blue assays. Rheological properties of the colloidal gels were measured to determine shear-thinning capabilities. Gels were then extruded through a custom-built DIW printer. Space filling constructs of the gels were printed and subjected to thermomechanical characterization to measure shape fixity (<i>R</i><sub>f</sub>) and shape recovery (<i>R</i><sub>r</sub>) ratios through five successive shape memory cycles. The polymer-ceramic composite gels exhibited shear-thinning capabilities for extrusion through a nozzle for DIW. A significant increase in cellular viability was observed with the addition of β-TCP particles within the polymer matrix relative to pure PLA. Shape memory effect in the printed constructs was repeatable up to 4 cycles followed by permanent deformation. While further research on scaffold macro-/micro-geometries, and engineered porosities are warranted, this proof-of-concept study suggested suitability of this polymer-ceramic material and the DIW 3D printing workflow for the production of customized, patient specific constructs for bone tissue engineering.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving osseointegration and antimicrobial properties of titanium implants with black phosphorus nanosheets-hydroxyapatite composite coatings for vascularized bone regeneration 用黑磷纳米片-羟基磷灰石复合涂层改善钛植入物的骨结合和抗菌性能,促进血管化骨再生。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-23 DOI: 10.1002/jbm.b.35403
Shilong Ma, Ruize Sun, Yuhui Wang, Yan Wei, Haofeng Xu, Xuanyu Liu, Ziwei Liang, Liqin Zhao, Yinchun Hu, Xiaojie Lian, Meiqing Guo, Di Huang
{"title":"Improving osseointegration and antimicrobial properties of titanium implants with black phosphorus nanosheets-hydroxyapatite composite coatings for vascularized bone regeneration","authors":"Shilong Ma,&nbsp;Ruize Sun,&nbsp;Yuhui Wang,&nbsp;Yan Wei,&nbsp;Haofeng Xu,&nbsp;Xuanyu Liu,&nbsp;Ziwei Liang,&nbsp;Liqin Zhao,&nbsp;Yinchun Hu,&nbsp;Xiaojie Lian,&nbsp;Meiqing Guo,&nbsp;Di Huang","doi":"10.1002/jbm.b.35403","DOIUrl":"10.1002/jbm.b.35403","url":null,"abstract":"<p>For decades, titanium implants have shown impressive advantages in bone repair. However, the preparation of implants with excellent antimicrobial properties as well as better osseointegration ability remains difficult for clinical application. In this study, black phosphorus nanosheets (BPNSs) were doped into hydroxyapatite (HA) coatings using electrophoretic deposition. The coatings' surface morphology, roughness, water contact angle, photothermal properties, and antibacterial properties were investigated. The BP/HA coating exhibited a surface roughness of 59.1 nm, providing an ideal substrate for cell attachment and growth. The water contact angle on the BP/HA coating was measured to be approximately 8.55°, indicating its hydrophilic nature. The BPNSs demonstrated efficient photothermal conversion, with a temperature increase of 42.2°C under laser irradiation. The BP/HA composite coating exhibited a significant reduction in bacterial growth, with inhibition rates of 95.6% and 96.1% against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. In addition, the cytocompatibility of the composite coating was evaluated by cell adhesion, CCK8 and AM/PI staining; the effect of the composite coating in promoting angiogenesis was assessed by scratch assay, transwell assay, and protein blotting; and the osteoinductivity of the composite coating was evaluated by alkaline phosphatase assay, alizarin red staining, and Western blot. The results showed that the BP/HA composite coating exhibited superior performance in promoting biological functions such as cell proliferation and adhesion, antibacterial activity, osteogenic differentiation, and angiogenesis, and had potential applications in vascularized bone regeneration.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between blood markers and the progression of osseointegration in percutaneous prostheses patients—A pilot study 经皮假体患者血液标记物与骨结合进展之间的关系--一项试验性研究。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-08 DOI: 10.1002/jbm.b.35398
Andrew Miller, Sujee Jeyapalina, Jayant P. Agarwal, James Peter Beck
{"title":"Association between blood markers and the progression of osseointegration in percutaneous prostheses patients—A pilot study","authors":"Andrew Miller,&nbsp;Sujee Jeyapalina,&nbsp;Jayant P. Agarwal,&nbsp;James Peter Beck","doi":"10.1002/jbm.b.35398","DOIUrl":"10.1002/jbm.b.35398","url":null,"abstract":"<p>Patients implanted with osseointegrated (OI) prosthetic systems have reported vastly improved upper and lower extremity prosthetic function compared with their previous experience with socket-suspension systems. However, OI systems have been associated with superficial and deep-bone infections and implant loosening due, in part, to a failure of the osseointegration process. Although monitoring the osseointegration using circulating biomarkers has clinical relevance for understanding the progression of osseointegration with these devices, it has yet to be established. Ten patients were enrolled in this study. Blood samples were collected at pre-selected times, starting before implantation surgery, and continuing to 12 months after the second surgery. Bone formation markers, bone resorption markers, and circulating amino acids were measured from blood samples. A linear mixed model was generated for each marker, incorporating patient ID and age with the normalized marker value as the response variable. Post hoc comparisons were made between 1 week before Stage 1 Surgery and all subsequent time points for each marker, followed by multiple testing corrections. Serial radiographic imaging of the residual limb containing the implant was obtained during follow-up, and the cortical index (CI) was calculated for the bone at the porous region of the device. Two markers of bone formation, specifically bone-specific alkaline phosphatase (Bone-ALP) and amino-terminal propeptide of type I procollagen (PINP), exhibited significant increases when compared with the baseline levels of unloaded residual bone prior to the initial surgery, and they subsequently returned to their baseline levels by the 12-month mark. Patients who experienced clinically robust osseointegration experienced increased cortical bone thickness at the porous coated region of the device. A medium correlation was observed between Bone-ALP and the porous CI values up to PoS2-M1 (<i>p</i> = .056), while no correlation was observed for PINP. An increase in bone formation markers and the lack of change observed in bone resorption markers likely reflect increased cortical bone formation induced by the end-loading design of the Utah OI device used in this study. A more extensive study is required to validate the correlation observed between Bone-ALP and porous CI values.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35398","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Injectable macroporous naturally-derived apatite bone cement as a potential trabecular bone substitute 可注射的大孔天然磷灰石骨水泥作为一种潜在的骨小梁替代物。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-08 DOI: 10.1002/jbm.b.35397
Vimal Kumar Dewangan, T. S. Sampath Kumar, Mukesh Doble, Viju Daniel Varghese
{"title":"Injectable macroporous naturally-derived apatite bone cement as a potential trabecular bone substitute","authors":"Vimal Kumar Dewangan,&nbsp;T. S. Sampath Kumar,&nbsp;Mukesh Doble,&nbsp;Viju Daniel Varghese","doi":"10.1002/jbm.b.35397","DOIUrl":"10.1002/jbm.b.35397","url":null,"abstract":"<p>In this study, we have formulated a novel apatite bone cements derived from natural sources (i.e. eggshell and fishbone) with improved qualities that is, porosity, resorbability, biological activity, and so forth. The naturally-derived apatite bone cement (i.e. FBDEAp) was prepared by mixing hydroxyapatite (synthesized from fishbone) and tricalcium phosphate (synthesized from eggshell) as a solid phase with a liquid phase (a dilute acidic blend of cement binding accelerator and biopolymers like gelatin and chitosan) with polysorbate (as liquid porogen) to get a desired bone cement paste. The prepared cement paste sets within the clinically acceptable setting time (≤20 min), easily injectable (&gt;85%) through hands and exhibits physiological pH stability (7.3–7.4). The pure apatite phased bone cement was confirmed by x-ray diffraction and Fourier transform infrared spectroscopy analyses. The FBDEAp bone cement possesses acceptable compressive strength (i.e. 5–7 MPa) within trabecular bone range and is resorbable up to 28% in simulated body fluid solution within 12 weeks of incubation at physiological conditions. The FBDEAp is macroporous in nature (average pore size ~50–400 μm) with interconnected pores verified by SEM and micro-CT analyses. The FBDEAp showed significantly increased MG63 cell viability (&gt;125% after 72 h), cell adhesion, proliferation, and key osteogenic genes expression levels (up to 5–13 folds) compared to the synthetically derived, synthetic and eggshell derived as well as synthetic and fishbone derived bone cements. Thus, we strongly believe that our prepared FBDEAp bone cement can be used as potential trabecular bone substitute in orthopedics.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosafety and chemical solubility studies of multiscale crystal-reinforced lithium disilicate glass-ceramics 多尺度晶体增强二硅酸锂玻璃陶瓷的生物安全性和化学溶解性研究。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-08 DOI: 10.1002/jbm.b.35400
Tong Zhang, Jinrong Liu, Jin Qi, Lingxiang Sun, Xiaoming Liu, Jingyu Yan, Yanjie Zhang, Xiuping Wu, Bing Li
{"title":"Biosafety and chemical solubility studies of multiscale crystal-reinforced lithium disilicate glass-ceramics","authors":"Tong Zhang,&nbsp;Jinrong Liu,&nbsp;Jin Qi,&nbsp;Lingxiang Sun,&nbsp;Xiaoming Liu,&nbsp;Jingyu Yan,&nbsp;Yanjie Zhang,&nbsp;Xiuping Wu,&nbsp;Bing Li","doi":"10.1002/jbm.b.35400","DOIUrl":"10.1002/jbm.b.35400","url":null,"abstract":"<p>Lithium disilicate (Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>) glass-ceramics are currently a more widely used all-ceramic restorative material due to their good mechanical properties and excellent aesthetic properties. However, they have a series of problems such as high brittleness and low fracture toughness, which has become the main bottleneck restricting its development. Therefore, in order to compensate for these shortcomings, we propose to prepare a reinforced glass-ceramics with better mechanical properties and to test the biosafety and chemical solubility of the material. Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> whiskers were synthesized by a one-step hydrothermal method, and multi-scale crystal-enhanced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics were prepared by reaction sintering. The biosafety of multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics was investigated by in vitro cytotoxicity test, rabbit pyrogen test, mice bone marrow micronucleus test, skin sensitization test, sub-chronic systemic toxicity test, and chronic systemic toxicity test. Additionally, the chemical solubility of multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics was investigated. The test results showed that the material was non-cytotoxic, non-thermogenic, non-mutagenic, non-sensitizing, and non-systemic. The chemical solubility, determined to be 377 ± 245 μg/cm<sup>2</sup>, complied with the ISO 6872 standard for the maximum solubility of ceramic materials. Multi-scale crystal-reinforced Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub> glass-ceramics' biosafety and chemical solubility met current normative criteria, and they can move on to mechanical property measurements (such as flexural strength test, fatigue life test, friction and wear property study, etc.) and bonding property optimization, which shows promise for future clinical applications.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140059521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and optimization of kaempferol loaded ethosomes using Box–Behnken statistical design: In vitro and ex-vivo assessments 使用 Box-Behnken 统计设计开发和优化山奈酚负载乙素体:体外和体内评估。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-04 DOI: 10.1002/jbm.b.35394
Shraddha Singh Raghav, Bhavna Kumar, Neeraj Kumar Sethiya, Shilpa Pahwa
{"title":"Development and optimization of kaempferol loaded ethosomes using Box–Behnken statistical design: In vitro and ex-vivo assessments","authors":"Shraddha Singh Raghav,&nbsp;Bhavna Kumar,&nbsp;Neeraj Kumar Sethiya,&nbsp;Shilpa Pahwa","doi":"10.1002/jbm.b.35394","DOIUrl":"10.1002/jbm.b.35394","url":null,"abstract":"<p>Kaempferol (KMP) belong to flavonoid class have developed in ethosomal formulation and were evaluated for their potential to treat diabetic foot ulcers. Even though ethosomes are highly deformable, they can pass through human skin intact. KMP ethosomes were formulated using the cold method and optimized by Box–Behnken design (BBD) (three-factor, three-level (3<sup>3</sup>)). The formulation variables used for optimization are drug concentration of KMP, soylecithin content, and ethanol percentage. The optimized formulation was examined using transmission electronic microscopy (TEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, <i>in-vitro</i> release, <i>ex-vivo</i> permeation studies, and storage stability. The optimized KMP ethosomes was found to have vesicle size (VS) of 283 ± 0.3 nm and zeta potential (ZP) of −29.67 ± 0.3 mV, polydispersity index (PDI) of 0.36, % entrapment efficiency (%EE) of 91.02 ± 0.21%, drug loading (%) of 46.23 ± 2.5% followed by good storage stability at 4°C/60 ± 5% RH. <i>In vitro</i> drug release of optimized KMP ethosomes was 88.2 ± 2.75%, which was approximately double when compared with pure KMP release, that is 49.9 ± 1.89%. The release kinetics for optimized KMP ethosomes follows the Korsmeyer–Peppas model. An apparent permeation coefficient of 356.25 ± 0.5 μg/cm<sup>2</sup> was determined and compared with pure KMP (118.46 ± 0.3 μg/cm<sup>2</sup>) for 24 h. According to the study, ethosomes can be a cutting-edge strategy that offers a new delivery method for prolonged and targeted distribution of KMP in a variety of dosage forms including oral, topical, transdermal, and so forth.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair 评估用于骨软骨修复的灌注多层丝纤维素复合支架中兔子脂肪衍生干细胞的命运。
IF 3.4 4区 医学
Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-03-04 DOI: 10.1002/jbm.b.35396
Sara Zadegan, Bahman Vahidi, Jhamak Nourmohammadi, Asiyeh Shojaee, Nooshin Haghighipour
{"title":"Evaluation of rabbit adipose derived stem cells fate in perfused multilayered silk fibroin composite scaffold for Osteochondral repair","authors":"Sara Zadegan,&nbsp;Bahman Vahidi,&nbsp;Jhamak Nourmohammadi,&nbsp;Asiyeh Shojaee,&nbsp;Nooshin Haghighipour","doi":"10.1002/jbm.b.35396","DOIUrl":"10.1002/jbm.b.35396","url":null,"abstract":"<p>Development of osteochondral tissue engineering approaches using scaffolds seeded with stem cells in association with mechanical stimulations has been recently considered as a promising technique for the repair of this tissue. In this study, an integrated and biomimetic trilayered silk fibroin (SF) scaffold containing SF nanofibers in each layer was fabricated. The osteogenesis and chondrogenesis of stem cells seeded on the fabricated scaffolds were investigated under a perfusion flow. 3-Dimethylthiazol-2,5-diphenyltetrazolium bromide assay showed that the perfusion flow significantly enhanced cell viability and proliferation. Analysis of gene expression by stem cells revealed that perfusion flow had significantly upregulated the expression of osteogenic and chondrogenic genes in the bone and cartilage layers and downregulated the hypertrophic gene expression in the intermediate layer of the scaffold. In conclusion, applying flow perfusion on the prepared integrated trilayered SF-based scaffold can support osteogenic and chondrogenic differentiation for repairing osteochondral defects.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 3","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信