HongXin Cai, Min-Yong Lee, Kwang-Mahn Kim, Heng Bo Jiang, Jae-Sung Kwon
{"title":"Evaluation of the Mechanical and Biological Properties of Polycaprolactone Scaffolds Produced by a Material Extrusion 3D Printer or 3D Pen: A Novel Bone Repair Strategy","authors":"HongXin Cai, Min-Yong Lee, Kwang-Mahn Kim, Heng Bo Jiang, Jae-Sung Kwon","doi":"10.1002/jbm.b.35526","DOIUrl":"10.1002/jbm.b.35526","url":null,"abstract":"<div>\u0000 \u0000 <p>Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (−45°/45°, 0°/90°), and concentric (CON). The bone repair scaffold creation process was simulated using a fused deposition modeling (FDM) 3D printer and a 3D pen by creating a cattle bone defect model to compare the achieved scaffold time efficiency and accuracy. Mechanical test results revealed that 3D pen-printed scaffolds with different textures exhibited varying results in four tests, except the shear bond test. Optimal scaffold strength was consistently achieved when printing parallel to the applied force. Regarding biological properties, these scaffolds exhibited consistent cell viability over time and showcased excellent cell attachment capabilities overall. Furthermore, cells grew regularly along the printed filaments, with additional living cells at high elevations observed. Additionally, the 3D pen method outperformed traditional digital technology with an FDM 3D printer concerning accuracy and speed. These findings underscored the tremendous potential of the 3D pen in the realm of medical science, specifically within the domain of bone tissue engineering, characterized by its low cost, high speed, and convenience.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ender Erguder, Merve Celik, Pinar Eylem Eser, Abdullah Durhan, Sema Hucumenoglu, Mehmet Ali Akkus, Fatih Buyukserin
{"title":"Iloprost-Loaded Electrospun Polycaprolactone/Gelatin Membranes for Enhanced Healing of Colon Anastomosis","authors":"Ender Erguder, Merve Celik, Pinar Eylem Eser, Abdullah Durhan, Sema Hucumenoglu, Mehmet Ali Akkus, Fatih Buyukserin","doi":"10.1002/jbm.b.35518","DOIUrl":"10.1002/jbm.b.35518","url":null,"abstract":"<div>\u0000 \u0000 <p>Despite the variety of proposed solutions, anastomotic leakage is still a critical complication after colorectal surgery, which causes increased clinical mortality and morbidity. By enhancing microcirculation in the colonic mucosa, the use of Iloprost (Ilo) has shown promising results for the healing of anastomosis. The purpose of this study is to examine the performance of Ilo-impregnated Polycaprolactone:Gelatin electrospun membranes (PCL/Gel/Ilo) on anastomosis repair and intra-abdominal adhesion behavior in the Rat colon. Wistar Albino rats were randomly divided into four groups: sham, Control (only resection-anastomosis), PCL/Gel, and PCL/Gel /Ilo (<i>n</i> = 12 for each). On the seventh day after colon anastomosis, a second laparotomy was conducted. During this procedure, intra-abdominal adhesion was examined, and the anastomotic segment was removed for burst pressure and histological evaluation. There was no statistically significant difference in intra-abdominal adhesions and major complications between the electrospun membrane groups and the control group. The membrane-applied groups exhibited significantly higher anastomotic burst pressure than the control group irrespective of their Ilo content. In terms of neovascularization and muscle necrosis, membrane-applied groups demonstrated statistically significant improvements over the control group. Furthermore, the PCL/Gel/Ilo applied group showed enhanced neovascularization and lower muscular necrosis; however, statistically significant differences were not observed compared to the PCL/Gel applied group. Compared to the control group, the application of electrospun PCL/Gel and PCL/Gel/Ilo membranes resulted in safe and effective healing of colon anastomosis. The fact that Ilo application cannot be distinguished from the regular membrane group necessitates additional research into the doped fibrous mat and its application method.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moein Zarei, Marek J. Żwir, Beata Michalkiewicz, Jarosław Gorący, Miroslawa El Fray
{"title":"Template-Assisted Electrospinning and 3D Printing of Multilayered Hierarchical Vascular Grafts","authors":"Moein Zarei, Marek J. Żwir, Beata Michalkiewicz, Jarosław Gorący, Miroslawa El Fray","doi":"10.1002/jbm.b.35525","DOIUrl":"10.1002/jbm.b.35525","url":null,"abstract":"<p>Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques. The outer layer was fabricated by template-assisted electrospinning utilizing a 3D-printed scaffold with a precise hexagonal pore design as the template, and the inner layer was coated with gelatin through perfusion. Cellulose nanocrystals (CNCs) were incorporated into electrospun fibers to enhance mechanical properties. The gelatin coating was applied to the lumen using perfusion coating, resembling the inner layer. Integration of 3D-printed structures with electrospun fibers via template-assisted electrospinning and gelatin coating resulted in a seamless multilayered scaffold. Mechanical testing demonstrated robustness, surpassing natural arteries in some aspects, while the gelatin coating significantly reduced liquid leakage, ensuring leak-free functionality. Cytotoxicity assessment confirmed the biocompatibility of processed materials with fibroblast cells, supporting potential for medical applications.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35525","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omar Hussein Hosny, Khaled Radad, Magda Mahmoud Ali, Ahmed Fathy Ahmed
{"title":"Beneficial Effects of Tilapia Fish Skin on Excisional Skin Wound Healing in a Type I Diabetic Rat Model","authors":"Omar Hussein Hosny, Khaled Radad, Magda Mahmoud Ali, Ahmed Fathy Ahmed","doi":"10.1002/jbm.b.35524","DOIUrl":"10.1002/jbm.b.35524","url":null,"abstract":"<div>\u0000 \u0000 <p>IntroductionProlonged hyperglycemia in diabetic patients often impairs wound healing, leading to chronic infections and complications. This study aimed to evaluate the potential of fresh Tilapia fish skin as a treatment to enhance wound healing in diabetic rats. MethodsThirty-nine healthy adult albino rats, weighing between 150 and 200 g, were divided into three groups: non-diabetic rats with untreated wounds [C-], diabetic rats with untreated wounds [C+], and diabetic rats treated with fresh Tilapia skin [TT]. The healing process was monitored through clinical observation, gross examination, and histopathological analysis. ResultsThe results demonstrated that the Tilapia skin treatment accelerated wound healing, as evidenced by complete reepithelialization, full epidermal cell differentiation, an intact dermo-epidermal junction, and a reorganized dermis with fewer blood vessels. ConclusionFresh Tilapia skin proved to be a safe and effective dressing for promoting wound healing and managing infection in diabetic wounds.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geissiane de Moraes Marcondes, Nicole Fidalgo Paretsis, Danielle Cristinne Baccarelli da Silva, Anderson Fernando de Souza, Mario Antônio Ferraro Rego, Grazieli Cristina Monteiro da Silva, Joice Fülber, Luciana Corrêa, Simone Peixe Friedrichsdorf, Ana Maria de Guzzi Plepis, Virginia da Conceição Amaro Martins, Silvia Renata Gaido Cortopassi, André Luis do Valle De Zoppa
{"title":"Bone Tissue Engineering With Chitosan, Carbon Nanotubes, and Hydroxyapatite Biomaterials Enriched With Mesenchymal Stem Cells: A Radiographic and Histological Evaluation in a Sheep Model Undergoing Ostectomy (Bone Tissue Engineering in a Sheep Model)","authors":"Geissiane de Moraes Marcondes, Nicole Fidalgo Paretsis, Danielle Cristinne Baccarelli da Silva, Anderson Fernando de Souza, Mario Antônio Ferraro Rego, Grazieli Cristina Monteiro da Silva, Joice Fülber, Luciana Corrêa, Simone Peixe Friedrichsdorf, Ana Maria de Guzzi Plepis, Virginia da Conceição Amaro Martins, Silvia Renata Gaido Cortopassi, André Luis do Valle De Zoppa","doi":"10.1002/jbm.b.35523","DOIUrl":"10.1002/jbm.b.35523","url":null,"abstract":"<div>\u0000 \u0000 <p>Comminuted fractures associated with tissue loss can adversely affect bone regeneration. Biomaterials enriched with mesenchymal stem cells (MSCs) employed for supporting osteosynthesis and potentiating osteoconduction are necessary to fill these bone defects. Natural compound biomaterials, similar to bone tissue, have been extensively tested in animal models for clinical use. Bone tissue engineering studies have used critical-size defects in ovine tibia monitored by imaging and histological examinations to evaluate the regenerative process. This study aimed to monitor the regenerative process in ovine tibial defects with or without chitosan, carbon nanotubes, or hydroxyapatite biomaterials, enriched or not enriched with MSCs. A 3-cm ostectomy was performed in 18 female Suffolk sheep. A 10-hole 4.5 mm narrow locking compression plate was used for osteosynthesis. The animals were randomly divided into three groups (<i>n</i> = 6): control (CON); defects filled with chitosan, carbon nanotubes, and hydroxyapatite biomaterial (BIO); and the same biomaterial enriched with bone marrow MSCs (BIO + CELL). The animals were evaluated monthly using radiographic examinations until 90 postoperative days, when they were euthanized. The limbs were subjected to micro-computed tomography (micro-CT), and bone specimens were subjected to histological evaluations. The radiographic examinations revealed construction stability without plate deviation, fracture, or bone lysis. Micro-CT evaluation demonstrated a difference in bone microarchitecture between the CON and biomaterial treatment groups (BIO and BIO + CELL). In the histological evaluations, the CON group did not demonstrate bone formation, and in the treatment groups (BIO and BIO + CELL), biocompatibility with sheep tissue was noted, and bone formation with trabeculae interspersed with remnants of the biomaterial was observed, with no differences between the groups. In conclusion, biomaterials present osteoconduction with beneficial characteristics for filling bone-lost fractures, and MSCs did not interfere with bone formation.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mona Moaness, Shaimaa ElShebiney, Hanan H. Beherei, Mostafa Mabrouk
{"title":"Mesoporous Lanthanum-Doped Magnesium Phosphate Nanopowders Promote Healing of Critical-Size Bone Defects: An In Vivo Study","authors":"Mona Moaness, Shaimaa ElShebiney, Hanan H. Beherei, Mostafa Mabrouk","doi":"10.1002/jbm.b.35515","DOIUrl":"10.1002/jbm.b.35515","url":null,"abstract":"<div>\u0000 \u0000 <p>Treating severe bone deformities and abnormalities continues to be a major clinical hurdle, necessitating the adoption of suitable materials that can actively stimulate bone regeneration. Magnesium phosphate (MP) is a material that has the ability to stimulate the growth of bones. The current study involved the synthesis of mesoporous MP and lanthanum (La)-doped nanopowders using a chemical precipitation approach. The nanopowders were analyzed using several techniques, including XRD, FTIR, HR-TEM, BET, XPS, and FE-SEM. The results confirmed the nanopowders' size of less than 40 nm and the successful incorporation of La<sup>3+</sup> ions into the MP structure. The bioactivity of the materials was assessed in vitro using simulated bodily fluid (SBF) at 37°C for a duration of 14 days in a shaker incubator (50 rpm). The SEM showed that a bone-like apatite layer formed quickly on the nanopowders' surface, proving that they have unique bioactive properties. The EDX spectra confirmed the presence of Ca, P, Mg, and La elements after immersion in SBF. The MP nanopowders, both with and without La doping, demonstrated the capacity to stimulate bone formation in a rat femoral bone defect model over a 28-day duration. Radiographic and histological studies showed that the La-doped MP nanopowders greatly improved bone repair and regeneration in comparison to the La-free nanopowders. Finally, the readily producible mesoporous MP nanomaterials, especially those with increased La doping (up to 7 wt%), exhibit significant potential for the restoration of large bone defects. Hence, fabricated nanopowders have immense promise for repairing bone criterion defects.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gi-Wuk Jang, Kyung-Hyun Kim, Dong-Ah Shin, Hyun-Joon Jang, Chang-Kyu Lee, Dong-Kyu Chin, Jeong-Yoon Park, Seong-Wook Koo, Bong-Ju Moon
{"title":"Comparison of Outcomes After Anterior Cervical Discectomy and Fusion Using Bioactive Glass–Ceramic Spacer-7 (NOVOMAX-FUSION) and an Allograft Spacer: A Retrospective, Case-Matched, Multicenter Study","authors":"Gi-Wuk Jang, Kyung-Hyun Kim, Dong-Ah Shin, Hyun-Joon Jang, Chang-Kyu Lee, Dong-Kyu Chin, Jeong-Yoon Park, Seong-Wook Koo, Bong-Ju Moon","doi":"10.1002/jbm.b.35521","DOIUrl":"10.1002/jbm.b.35521","url":null,"abstract":"<div>\u0000 \u0000 <p>The bioactive glass–ceramic spacer (BGS)-7, a biosynthetic intervertebral fusion material introduced in 2014, has not been the subject of comparative clinical studies on anterior cervical discectomy and fusion (ACDF) surgery. This study, for the first time, aims to compare the radiological and clinical outcomes of the renewed BGS-7, released in 2019, with those of an allograft spacer. The comparison includes a finite element analysis of the biomechanical properties of each implant, adding a novel dimension to the research. We prospectively followed up on 29 patients who underwent ACDF using BGS-7 as the experimental group. To select a control group for comparison, 253 patients with level 1 ACDF with an allograft spacer between 2012 and 2022 were selected from our hospital. Using propensity score matching, 27 and 54 patients in the BGS-7 and allograft groups, respectively, were selected. The average subsidence length was 1.02 ± 1.44 mm per level in the BGS-7 group and 2.27 ± 2.25 mm per level in the allograft group. Subsidence was observed in 14 of 54 patients (25.9%) in the allograft group and one of 27 patients (3.7%) in the BGS-7 group (<i>p</i> = 0.016). In the allograft group, 16 of the 54 patients (29.6%) monitored for 6 months achieved satisfactory fusion outcomes with grades 4 and 5. Thirty-eight of 54 patients (70.4%) followed up for > 1 year in the allograft group achieved adequate fusion outcomes with grades 4 and 5. In the BGS-7 group, 17 of the 27 patients (63.0%) monitored for 6 months achieved satisfactory fusion results with grades 4 and 5. Twenty-three of the 27 patients (85.2%) followed up for > 1 year obtained adequate fusion outcomes with grades 4 and 5. There was a significant difference in the fusion rates between the two groups at 6 months (<i>p</i> = 0.008). BGS-7 is a reliable instrument for ACDF with no instances of instrumental failure. The BGS-7 group had positive clinical outcomes after surgery without any untoward events, and an early fusion rate with the creation of a bone bridge was noted during the 6-month follow-up period. Our findings not only indicate the safety of BGS-7 but also its practicality as a substitute for allografts in ACDF, instilling confidence in its application.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Döbelin, Osamu Suzuki, Christophe Drouet, Jānis Ločs, Gerard Insley, Philip Procter
{"title":"Workshop on the Latest Advances in Biomedical Applications of Octacalcium Phosphate","authors":"Nicola Döbelin, Osamu Suzuki, Christophe Drouet, Jānis Ločs, Gerard Insley, Philip Procter","doi":"10.1002/jbm.b.35500","DOIUrl":"10.1002/jbm.b.35500","url":null,"abstract":"<p>The first workshop on the “latest advances in biomedical applications of octacalcium phosphate (OCP)” was organized as a satellite symposium to the Bioceramics33 conference in Solothurn, Switzerland, in October 2023. The event brought together leading researchers and industry representatives to present and discuss their latest groundbreaking research aimed at developing and commercializing advanced OCP-based biomaterials for bone regeneration. The topics presented by the six invited speakers ranged from a fundamental understanding of the OCP crystal chemistry to advanced processing and characterization methods, functionalization, biomineralization, and commercialization. With this summary report, we are laying the foundation for a continuation of a series of workshops on the subject of OCP biomaterials in order to promote the exchange between researchers and industry representatives and to drive forward the development and commercialization of new improved synthetic bone substitute materials.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reese A. Dunne, Doyl E. Dickel, Addison M. Green, Dam Kim, Lauren B. Priddy, Matthew W. Priddy
{"title":"Finite Element and Density Functional Theory Modeling Effectively Predict Pitting Degradation of Hydroxyapatite-Coated Pure Magnesium","authors":"Reese A. Dunne, Doyl E. Dickel, Addison M. Green, Dam Kim, Lauren B. Priddy, Matthew W. Priddy","doi":"10.1002/jbm.b.35519","DOIUrl":"10.1002/jbm.b.35519","url":null,"abstract":"<div>\u0000 \u0000 <p>The emergence of degradable orthopedic implants for fracture fixation may abrogate the need for implant removal surgery and minimize pain associated with permanent implants. Magnesium (Mg) and its alloys are being explored as a biomaterial for degradable implants due to mechanical properties similar to those of bone. Previous in vitro studies have determined the degradation rate of pure Mg to be relatively fast when compared to bone regeneration. Hydroxyapatite (HA), the mineral component of bone, may serve as a surface coating on Mg-based implants to effectively slow and control the degradation rate. The objective of this work was to develop and implement a finite element (FE) model that utilizes a damage evolution law for pitting corrosion to predict the degradation of pure Mg (non-coated) and HA-coated pure Mg (coated) materials simulated in physiological conditions. Finite element analysis (FEA) was performed on a cylindrical Mg specimen (25.4 mm diameter, 8 mm height) through Abaqus/Standard software to incrementally monitor the damage value of each Mg element and subsequently delete fully-degraded elements from the simulation. A Fortran user-material (UMAT) subroutine assigned each element a pitting parameter, controlling the rate of degradation throughout the simulation and providing necessary inputs of elastic material properties and degradation model parameters for pure Mg and HA into Abaqus. The simulations allowed for the visualization of both pure Mg and HA-coated pure Mg degradation over a 120-day period, displaying expected degradation trends such as lower corrosion rates for HA-coated Mg and degradation propagating from the edges inward. Simulation results were calibrated with our prior results from a 30-day experimental degradation study via direct comparison with mass loss over time. Additionally, lower length scale, density functional theory (DFT) simulations were performed to provide physical meaning for the model pitting parameter. The FE simulation was extended to model resin-enclosed pure Mg and HA-coated pure Mg degradation, where only the top surface of the specimen was exposed to the corrosion surface, for investigating changes in Mg surface roughness (height) over time. The impacts of this work include the establishment of a computational model of pure Mg and HA-coated pure Mg degradation calibrated using in vitro degradation data to advance the use of Mg-based biomaterials, and more broadly, to predict degradation rates of next-generation orthopedic implants.</p>\u0000 </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Systematic Enhancement of Microbial Decontamination Efficiency in Bone Graft Processing by Means of High Hydrostatic Pressure Using Escherichia coli as a Model Organism","authors":"","doi":"10.1002/jbm.b.35505","DOIUrl":"10.1002/jbm.b.35505","url":null,"abstract":"<p>H. Loeffler, J. Waletzko-Hellwig, R. Fischer, et al., “Systematic Enhancement of Microbial Decontamination Efficiency in Bone Graft Processing by Means of High Hydrostatic Pressure Using Escherichia coli as a Model Organism,” Journal of Biomedical Materials Research Part B 112 (2024): e35383. https://doi.org/10.1002/jbm.b.35383.</p><p>A recalibration of the high hydrostatic pressure device after the publication of this paper revealed incorrect pressure levels stated in this article. As this is a systematic error, it is necessary to correct the pressure levels by the factor of 0.7. Accordingly, 250 MPa now corresponds to 175 MPa, 350 MPa was corrected to 245 MPa and 600 MPa is now 420 MPa, suggesting that the efficiency of the treatment was higher than initially assumed.</p><p>A detailed listing of the affected text passages can be found below. Figures as well as Figure captions were corrected and attached, accordingly.</p><p>We apologize for this error.\u0000 </p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}