Comparison of Biofilm Accumulation on Conventional and CAD/CAM Orthodontic Band Alloys (In Vivo) and Subsequent Enamel Demineralization (Ex Vivo)

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Amelia Horsnell, Mauro Farella, Geoffrey Tompkins, Wendy-Ann Jansen van Vuuren
{"title":"Comparison of Biofilm Accumulation on Conventional and CAD/CAM Orthodontic Band Alloys (In Vivo) and Subsequent Enamel Demineralization (Ex Vivo)","authors":"Amelia Horsnell,&nbsp;Mauro Farella,&nbsp;Geoffrey Tompkins,&nbsp;Wendy-Ann Jansen van Vuuren","doi":"10.1002/jbm.b.35573","DOIUrl":null,"url":null,"abstract":"<p>Biofilm accumulation can lead to enamel decalcification, gingivitis, and periodontal disease. The objective of this study was to compare the accumulation of biofilm under in vivo conditions and consequent ex vivo acid production and enamel demineralization around the material used for “off-the-shelf” conventional and CAD/CAM orthodontics bands. The study design required both in vivo and in vitro approaches. An experimental model was utilized to combine the exposure of an in vivo formed biofilm to in vitro cariogenic conditions to achieve the objective. Twenty-one consenting participants took part in this study. Participants wore custom intraoral appliances containing six bovine enamel discs (three on each maxillary arch) for 48 h. Tiles made from conventional stainless steel bands (SS tiles group), CAD/CAM tiles made of Sintron cobalt-chromium (CoCr) sinter metal (Sintron tiles group), and no tile (control group) were randomly assigned to disc positions such that each appliance contained two tiles from each group (126 tiles in total). Participants immersed the appliances in sucrose solution (10% w/v) for 5 min, five times per day. After 48 h, appliances were removed, the discs were recovered, and incubated in glucose (1%)/PBS for 24 h. The pH of the glucose/PBS measured the relative acid produced by the accumulated biofilm, and calcium released from the discs quantified demineralization. Disclosing dye was used to stain and delineate the biofilm before each disc was digitally photographed and analyzed to determine the biofilm coverage. The mean biofilm coverage ranged between 0% and 86% (mean 9.63%) of disc surface area, but there was no difference in biofilm coverage between tile groups or between tile positions. Significantly less acid was generated by the control discs biofilms (mean pH 5.06) than either SS or CAD/CAM tiles biofilms (pH 4.72 and 4.84, respectively), which were not different from one another. Position on the appliance did not affect acid production. Control discs experienced greater demineralization (mean 136 μg Ca/disc) than either the SS (122 μg Ca/disc) or Sintron (114 μg Ca/disc) tile groups, which suffered equivalent demineralization. Position on the appliances did not influence demineralization. The study provides no evidence that CAD/CAM-designed components of orthodontic bands are more beneficial than conventional bands in terms of biofilm accumulation and consequent caries risk.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35573","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilm accumulation can lead to enamel decalcification, gingivitis, and periodontal disease. The objective of this study was to compare the accumulation of biofilm under in vivo conditions and consequent ex vivo acid production and enamel demineralization around the material used for “off-the-shelf” conventional and CAD/CAM orthodontics bands. The study design required both in vivo and in vitro approaches. An experimental model was utilized to combine the exposure of an in vivo formed biofilm to in vitro cariogenic conditions to achieve the objective. Twenty-one consenting participants took part in this study. Participants wore custom intraoral appliances containing six bovine enamel discs (three on each maxillary arch) for 48 h. Tiles made from conventional stainless steel bands (SS tiles group), CAD/CAM tiles made of Sintron cobalt-chromium (CoCr) sinter metal (Sintron tiles group), and no tile (control group) were randomly assigned to disc positions such that each appliance contained two tiles from each group (126 tiles in total). Participants immersed the appliances in sucrose solution (10% w/v) for 5 min, five times per day. After 48 h, appliances were removed, the discs were recovered, and incubated in glucose (1%)/PBS for 24 h. The pH of the glucose/PBS measured the relative acid produced by the accumulated biofilm, and calcium released from the discs quantified demineralization. Disclosing dye was used to stain and delineate the biofilm before each disc was digitally photographed and analyzed to determine the biofilm coverage. The mean biofilm coverage ranged between 0% and 86% (mean 9.63%) of disc surface area, but there was no difference in biofilm coverage between tile groups or between tile positions. Significantly less acid was generated by the control discs biofilms (mean pH 5.06) than either SS or CAD/CAM tiles biofilms (pH 4.72 and 4.84, respectively), which were not different from one another. Position on the appliance did not affect acid production. Control discs experienced greater demineralization (mean 136 μg Ca/disc) than either the SS (122 μg Ca/disc) or Sintron (114 μg Ca/disc) tile groups, which suffered equivalent demineralization. Position on the appliances did not influence demineralization. The study provides no evidence that CAD/CAM-designed components of orthodontic bands are more beneficial than conventional bands in terms of biofilm accumulation and consequent caries risk.

Abstract Image

常规和CAD/CAM正畸带合金生物膜积累(体内)及牙釉质脱矿(体外)的比较
生物膜的积累会导致牙釉质脱钙、牙龈炎和牙周病。本研究的目的是比较“现成的”常规和CAD/CAM正畸带材料周围的生物膜在体内的积累和随后的体外酸生成和牙釉质脱矿。研究设计需要体内和体外两种方法。利用实验模型将体内形成的生物膜暴露于体外致龋条件下以达到目的。21名同意的参与者参加了这项研究。参与者佩戴定制的含6个牛牙釉质盘的口腔内器具(每个上颌弓上3个)48小时。由传统不锈钢带制成的瓦片(SS瓦片组),由Sintron钴铬(CoCr)烧结金属制成的CAD/CAM瓦片(Sintron瓦片组),以及没有瓦片(对照组)被随机分配到磁盘位置,以便每个器具包含两组瓦片(总共126块瓦片)。参与者将电器浸入蔗糖溶液(10% w/v)中5分钟,每天5次。48 h后,取下器械,回收椎间盘,在葡萄糖(1%)/PBS中孵育24 h。葡萄糖/PBS的pH值测量了积累的生物膜产生的相对酸,而从圆盘释放的钙量化了脱矿。在对每个椎间盘进行数码拍照和分析以确定生物膜覆盖率之前,使用揭露染料对生物膜进行染色和描绘。平均生物膜覆盖率在0% ~ 86%(平均9.63%)之间,但不同瓦组和不同瓦位间生物膜覆盖率无显著差异。对照圆盘生物膜(平均pH为5.06)的产酸量显著低于SS或CAD/CAM瓦片生物膜(pH分别为4.72和4.84),两者之间差异不大。在器具上的位置不影响产酸。与SS组(122 μg Ca/disc)和Sintron组(114 μg Ca/disc)相比,对照组(平均136 μg Ca/disc)的脱矿效果更好。器具上的位置不影响脱矿。本研究没有证据表明CAD/ cam设计的正畸带组件在生物膜积累和随之而来的龋齿风险方面比传统的正畸带更有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信