Prabhash Dadhich, Pallabi Pal, Nantu Dogra, Pavan K. Srivas, Bodhisatwa Das, Samir Das, Pallab Datta, Baisakhee Saha, Bo Su, Santanu Dhara
{"title":"Calcium Phosphate Apatite Filament Co-Wrapped With Perforated Electrospun Sheet of Phosphorylated Chitosan—A Bioinspired Approach Toward Bone Graft Substitute","authors":"Prabhash Dadhich, Pallabi Pal, Nantu Dogra, Pavan K. Srivas, Bodhisatwa Das, Samir Das, Pallab Datta, Baisakhee Saha, Bo Su, Santanu Dhara","doi":"10.1002/jbm.b.35589","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bioinspired bone graft substitutes hold incredible opportunities in tissue engineering, potentiating the healing aspect. Here we have fabricated stacks of glutaraldehyde–genipin crosslinked, microporous nanofibrous <i>N</i>-methyl phosphonic chitosan sheets (NMPC) with impregnated eggshell-derived CaP fibers to mimic osteonal architecture. This composite 3D rolled eggshell-derived calcium phosphate (ESCAP) scaffold (RCS), with density and modulus variation from the center to the periphery, has superior mechanical strength. The zwitterionic nature of NMPC, following the surface modulus of the CaP fibers, upgraded the biological performance. The low modulus of the flexible micro-perforated nanofibrous sheet increases along the ceramic phase, which prompts migration and distribution of proliferated MSCs from the outer polymeric surface to the inner ceramic region through micro-perforations. This movement stimulates endochondral ossification, observed by a gradual increment of collagen II expression alongside a decrement of collagen I expression. In vivo assessment of rabbit tibia bone defects revealed prominent healing in the presence of a scaffold by Day 60, accompanied by scaffold resorption. The cellular activity during healing revealed osteoblasts, osteocytes, blood vessels, and chondroblast cells at the boundary of the scaffolds, indicating neotissue and hypertrophic cartilage formation. Thus, the RCS bone grafts promote faster bone healing by osteogenesis and bone remodeling.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35589","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioinspired bone graft substitutes hold incredible opportunities in tissue engineering, potentiating the healing aspect. Here we have fabricated stacks of glutaraldehyde–genipin crosslinked, microporous nanofibrous N-methyl phosphonic chitosan sheets (NMPC) with impregnated eggshell-derived CaP fibers to mimic osteonal architecture. This composite 3D rolled eggshell-derived calcium phosphate (ESCAP) scaffold (RCS), with density and modulus variation from the center to the periphery, has superior mechanical strength. The zwitterionic nature of NMPC, following the surface modulus of the CaP fibers, upgraded the biological performance. The low modulus of the flexible micro-perforated nanofibrous sheet increases along the ceramic phase, which prompts migration and distribution of proliferated MSCs from the outer polymeric surface to the inner ceramic region through micro-perforations. This movement stimulates endochondral ossification, observed by a gradual increment of collagen II expression alongside a decrement of collagen I expression. In vivo assessment of rabbit tibia bone defects revealed prominent healing in the presence of a scaffold by Day 60, accompanied by scaffold resorption. The cellular activity during healing revealed osteoblasts, osteocytes, blood vessels, and chondroblast cells at the boundary of the scaffolds, indicating neotissue and hypertrophic cartilage formation. Thus, the RCS bone grafts promote faster bone healing by osteogenesis and bone remodeling.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.