Calcium Phosphate Apatite Filament Co-Wrapped With Perforated Electrospun Sheet of Phosphorylated Chitosan—A Bioinspired Approach Toward Bone Graft Substitute

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Prabhash Dadhich, Pallabi Pal, Nantu Dogra, Pavan K. Srivas, Bodhisatwa Das, Samir Das, Pallab Datta, Baisakhee Saha, Bo Su, Santanu Dhara
{"title":"Calcium Phosphate Apatite Filament Co-Wrapped With Perforated Electrospun Sheet of Phosphorylated Chitosan—A Bioinspired Approach Toward Bone Graft Substitute","authors":"Prabhash Dadhich,&nbsp;Pallabi Pal,&nbsp;Nantu Dogra,&nbsp;Pavan K. Srivas,&nbsp;Bodhisatwa Das,&nbsp;Samir Das,&nbsp;Pallab Datta,&nbsp;Baisakhee Saha,&nbsp;Bo Su,&nbsp;Santanu Dhara","doi":"10.1002/jbm.b.35589","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bioinspired bone graft substitutes hold incredible opportunities in tissue engineering, potentiating the healing aspect. Here we have fabricated stacks of glutaraldehyde–genipin crosslinked, microporous nanofibrous <i>N</i>-methyl phosphonic chitosan sheets (NMPC) with impregnated eggshell-derived CaP fibers to mimic osteonal architecture. This composite 3D rolled eggshell-derived calcium phosphate (ESCAP) scaffold (RCS), with density and modulus variation from the center to the periphery, has superior mechanical strength. The zwitterionic nature of NMPC, following the surface modulus of the CaP fibers, upgraded the biological performance. The low modulus of the flexible micro-perforated nanofibrous sheet increases along the ceramic phase, which prompts migration and distribution of proliferated MSCs from the outer polymeric surface to the inner ceramic region through micro-perforations. This movement stimulates endochondral ossification, observed by a gradual increment of collagen II expression alongside a decrement of collagen I expression. In vivo assessment of rabbit tibia bone defects revealed prominent healing in the presence of a scaffold by Day 60, accompanied by scaffold resorption. The cellular activity during healing revealed osteoblasts, osteocytes, blood vessels, and chondroblast cells at the boundary of the scaffolds, indicating neotissue and hypertrophic cartilage formation. Thus, the RCS bone grafts promote faster bone healing by osteogenesis and bone remodeling.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35589","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired bone graft substitutes hold incredible opportunities in tissue engineering, potentiating the healing aspect. Here we have fabricated stacks of glutaraldehyde–genipin crosslinked, microporous nanofibrous N-methyl phosphonic chitosan sheets (NMPC) with impregnated eggshell-derived CaP fibers to mimic osteonal architecture. This composite 3D rolled eggshell-derived calcium phosphate (ESCAP) scaffold (RCS), with density and modulus variation from the center to the periphery, has superior mechanical strength. The zwitterionic nature of NMPC, following the surface modulus of the CaP fibers, upgraded the biological performance. The low modulus of the flexible micro-perforated nanofibrous sheet increases along the ceramic phase, which prompts migration and distribution of proliferated MSCs from the outer polymeric surface to the inner ceramic region through micro-perforations. This movement stimulates endochondral ossification, observed by a gradual increment of collagen II expression alongside a decrement of collagen I expression. In vivo assessment of rabbit tibia bone defects revealed prominent healing in the presence of a scaffold by Day 60, accompanied by scaffold resorption. The cellular activity during healing revealed osteoblasts, osteocytes, blood vessels, and chondroblast cells at the boundary of the scaffolds, indicating neotissue and hypertrophic cartilage formation. Thus, the RCS bone grafts promote faster bone healing by osteogenesis and bone remodeling.

磷酸钙磷灰石细丝与磷酸化壳聚糖多孔电纺丝片共包——一种生物启发的骨移植替代物
生物骨移植替代品在组织工程中具有不可思议的机会,增强了愈合方面。在这里,我们用浸渍蛋壳衍生的CaP纤维制造了戊二醛- genipin交联的微孔纳米纤维n -甲基膦壳聚糖片(NMPC)来模拟骨结构。该复合材料三维卷曲蛋壳衍生磷酸钙(ESCAP)支架(RCS),其密度和模量由中心向外围变化,具有优越的机械强度。NMPC的两性离子性质,继CaP纤维的表面模量之后,提高了生物性能。柔性微孔纳米纤维片的低模量沿着陶瓷相增加,这促使增殖的间充质干细胞通过微孔从聚合物外表面迁移和分布到陶瓷内区。这种运动刺激软骨内成骨,观察到胶原II表达的逐渐增加和胶原I表达的减少。兔胫骨缺损的体内评估显示,在支架存在的情况下,到第60天明显愈合,并伴有支架的吸收。愈合过程中的细胞活性显示支架边界的成骨细胞、骨细胞、血管和成软骨细胞,表明新生组织和软骨肥大形成。因此,RCS骨移植物通过成骨和骨重塑促进更快的骨愈合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信