Amanda Endres Willers, Marcelo Giannini, Ronaldo Hirata, Edmara T. P. Bergamo, Beatriz de Cássia Romano, Carolina Bosso André, Pablo J. Atria, Lukasz Witek
{"title":"Three-Dimensional Assessment of Internal and Marginal Fit of Provisional Crowns Fabricated Using 3D-Printing Technology","authors":"Amanda Endres Willers, Marcelo Giannini, Ronaldo Hirata, Edmara T. P. Bergamo, Beatriz de Cássia Romano, Carolina Bosso André, Pablo J. Atria, Lukasz Witek","doi":"10.1002/jbm.b.35595","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To evaluate the effect of silanized filler particles and blue light-sensitive photoinitiator system on the internal and marginal fit of 3D printed resin crowns as well as the volume of provisional cement space. This study evaluated three commercially available 3D-printing resins (Smart Print Temp/SP, Resilab 3D Temp/RL, and Cosmos Temp/CT). The experimental groups consisted of the addition of 30% by weight (30 wt%) of silanized filler particles and a blue light-sensitive Ternary Photoinitiator System (TPS). Samples were printed for each group (<i>n</i> = 10) and evaluated for internal and marginal fit and volume of cement space using a micro-computed tomography (μCT). The obtained data were analyzed by Generalized Linear Models (<i>α</i> = 0.05). The incorporation of TPS and filler particles to the 3D printing resins altered the internal fit and the marginal fit, increasing the cement space at the occlusal face and decreasing the cement space of the axial walls for all tested materials. The volume was significantly affected too, especially for RL and CT. Internal misfit was significantly higher with the addition of TPS, and marginal misfit with the addition of filler particles. In general, the incorporation of TPS and 30 wt% of filler particles promoted an increase in the volume of cement space, as well as an increase in occlusal space and marginal space and a decrease in the axial walls' spaces.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35595","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To evaluate the effect of silanized filler particles and blue light-sensitive photoinitiator system on the internal and marginal fit of 3D printed resin crowns as well as the volume of provisional cement space. This study evaluated three commercially available 3D-printing resins (Smart Print Temp/SP, Resilab 3D Temp/RL, and Cosmos Temp/CT). The experimental groups consisted of the addition of 30% by weight (30 wt%) of silanized filler particles and a blue light-sensitive Ternary Photoinitiator System (TPS). Samples were printed for each group (n = 10) and evaluated for internal and marginal fit and volume of cement space using a micro-computed tomography (μCT). The obtained data were analyzed by Generalized Linear Models (α = 0.05). The incorporation of TPS and filler particles to the 3D printing resins altered the internal fit and the marginal fit, increasing the cement space at the occlusal face and decreasing the cement space of the axial walls for all tested materials. The volume was significantly affected too, especially for RL and CT. Internal misfit was significantly higher with the addition of TPS, and marginal misfit with the addition of filler particles. In general, the incorporation of TPS and 30 wt% of filler particles promoted an increase in the volume of cement space, as well as an increase in occlusal space and marginal space and a decrease in the axial walls' spaces.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.