Decellularised Amniotic Membrane for the Neurogenic Expression of Human Mesenchymal Stem Cells

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Jingwen Wu, Yantong Wang, Tong Zhang, Fenglin Yu, Yunci Wang, Xiaoyong Ran, Qi Hao, Yangyang Cao, Yanchuan Guo
{"title":"Decellularised Amniotic Membrane for the Neurogenic Expression of Human Mesenchymal Stem Cells","authors":"Jingwen Wu,&nbsp;Yantong Wang,&nbsp;Tong Zhang,&nbsp;Fenglin Yu,&nbsp;Yunci Wang,&nbsp;Xiaoyong Ran,&nbsp;Qi Hao,&nbsp;Yangyang Cao,&nbsp;Yanchuan Guo","doi":"10.1002/jbm.b.35588","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To observe the induction of neurogenic differentiation in human mesenchymal stem cells (hMSCs) by decellularized amniotic membrane (DAM), thereby promoting neural regeneration for peripheral neuropathy. Subcutaneous implantation and immunofluorescence staining were conducted to observe the condition of neural cells. Cell adhesion and viability were evaluated through adhesion assays and live/dead cell staining on the DAM. Spatial transcriptomics sequencing was performed to analyze the expression of genes related to adhesion and neural differentiation. Subsequently, stem cells were seeded onto the DAM, and immunofluorescence staining was used to observe neural cell markers and cell migration capabilities. Finally, a network pharmacological analysis, based on the spatial transcriptome results, was performed to identify neurological-related disorders that may be treated by DAM. The cell adhesion assays showed an increased number of adherent cells with normal morphology. Spatial transcriptomics analysis indicated that the DAM significantly upregulated genes associated with cell adhesion and neural differentiation. Immunofluorescence staining revealed that the DAM significantly induced the expression of neural marker proteins. Lastly, subcutaneous implantation demonstrated the aggregation of neural-related cells. DAM can promote stem cell adhesion, induce cell migration, and thereby enhance neural repair and regeneration in cases of peripheral neuropathy.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35588","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To observe the induction of neurogenic differentiation in human mesenchymal stem cells (hMSCs) by decellularized amniotic membrane (DAM), thereby promoting neural regeneration for peripheral neuropathy. Subcutaneous implantation and immunofluorescence staining were conducted to observe the condition of neural cells. Cell adhesion and viability were evaluated through adhesion assays and live/dead cell staining on the DAM. Spatial transcriptomics sequencing was performed to analyze the expression of genes related to adhesion and neural differentiation. Subsequently, stem cells were seeded onto the DAM, and immunofluorescence staining was used to observe neural cell markers and cell migration capabilities. Finally, a network pharmacological analysis, based on the spatial transcriptome results, was performed to identify neurological-related disorders that may be treated by DAM. The cell adhesion assays showed an increased number of adherent cells with normal morphology. Spatial transcriptomics analysis indicated that the DAM significantly upregulated genes associated with cell adhesion and neural differentiation. Immunofluorescence staining revealed that the DAM significantly induced the expression of neural marker proteins. Lastly, subcutaneous implantation demonstrated the aggregation of neural-related cells. DAM can promote stem cell adhesion, induce cell migration, and thereby enhance neural repair and regeneration in cases of peripheral neuropathy.

脱细胞羊膜对人间充质干细胞神经源性表达的影响
观察脱细胞羊膜(DAM)诱导人间充质干细胞(hMSCs)的神经源性分化,从而促进周围神经病变的神经再生。皮下植入,免疫荧光染色,观察神经细胞状况。通过DAM上的粘附实验和活/死细胞染色来评估细胞的粘附和活力。空间转录组测序分析粘附和神经分化相关基因的表达。随后,将干细胞接种到DAM上,用免疫荧光染色观察神经细胞标记物和细胞迁移能力。最后,基于空间转录组结果进行网络药理学分析,以确定可能通过DAM治疗的神经相关疾病。细胞黏附实验显示正常形态的黏附细胞数量增加。空间转录组学分析表明,DAM显著上调了与细胞粘附和神经分化相关的基因。免疫荧光染色显示DAM显著诱导神经标记蛋白的表达。最后,皮下植入显示神经相关细胞聚集。DAM能促进周围神经病变的干细胞粘附,诱导细胞迁移,从而增强神经的修复和再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信