{"title":"Two-Streams Revisited: General Equations, Exact Coefficients, and Optimized Closures","authors":"Dion J. X. Ho, Robert Pincus","doi":"10.1029/2024MS004504","DOIUrl":"https://doi.org/10.1029/2024MS004504","url":null,"abstract":"<p>Two-Stream Equations are the most parsimonious general models for radiative flux transfer with one equation to model each of upward and downward fluxes; these are coupled due to the transfer of fluxes between hemispheres. Standard two-stream approximation of the Radiative Transfer Equation assumes that the ratios of flux transferred (coupling coefficients) are both invariant with optical depth and symmetric with respect to upwelling and downwelling radiation. Two-stream closures are derived by making additional assumptions about the angular distribution of the intensity field, but none currently works well for all parts of the optical parameter space. We determine the exact values of the two-stream coupling coefficients from multi-stream numerical solutions to the Radiative Transfer Equation for shortwave radiation. The resulting unique coefficients accurately reconstruct entire flux profiles but depend on optical depth. More importantly, they generally take on unphysical values when symmetry is assumed. We derive a general form of the Two-Stream Equations for which the four coupling coefficients are guaranteed to be physically explicable. While non-constant coupling coefficients are required to reconstruct entire flux profiles, numerically optimized constant coupling coefficients (which admit analytic solutions) reproduced shortwave reflectance and transmittance with relative errors no greater than <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mn>4</mn>\u0000 <mo>×</mo>\u0000 <mn>1</mn>\u0000 <msup>\u0000 <mn>0</mn>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation> $4times 1{0}^{-5}$</annotation>\u0000 </semantics></math> over a large range of optical parameters. The optimized coefficients show a dependence on solar zenith angle and total optical depth that diminishes as the latter increases. This explains why existing coupling coefficients, which often omit the former and mostly neglect the latter, tend to work well for only thin or only thick atmospheres.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Does Organized Convection Impact Explicitly Resolved Cloud Feedbacks in the Radiative-Convective Equilibrium Model Intercomparison Project?","authors":"Catherine L. Stauffer, Allison A. Wing","doi":"10.1029/2023MS003924","DOIUrl":"https://doi.org/10.1029/2023MS003924","url":null,"abstract":"<p>In simulations of radiative-convective equilibrium (RCE), and with sufficiently large domains, organized convection enhances top of atmosphere outgoing longwave radiation due to the reduced cloud coverage and drying of the mean climate state. As a consequence, estimates of climate sensitivity and cloud feedbacks may be affected. Here, we use a multi-model ensemble configured in RCE to study the dependence of explicitly calculated cloud feedbacks on the existence of organized convection, the degree to which convection within a domain organizes, and the change in organized convection with warming sea surface temperature. We find that, when RCE simulations with organized convection are compared to RCE simulations without organized convection, the propensity for convection to organize in RCE causes cloud feedbacks to have larger magnitudes due to the inclusion of low clouds, accompanied by a much larger inter-model spread. While we find no dependence of the cloud feedback on changes in organization with warming, models that are, on average, more organized have less positive, or even negative, cloud feedbacks. This is primarily due to changes in cloud optical depth in the shortwave, specifically high clouds thickening with warming in strongly organized domains. The shortwave cloud optical depth feedback also plays an important role in causing the tropical anvil cloud area feedback to be positive which is directly opposed to the expected negative or near zero cloud feedback found in prior work.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142428942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Response of Convectively Coupled Kelvin Waves to Surface Temperature Forcing in Aquaplanet Simulations","authors":"Mu-Ting Chien, Daehyun Kim","doi":"10.1029/2024MS004378","DOIUrl":"https://doi.org/10.1029/2024MS004378","url":null,"abstract":"<p>This study investigates changes in the propagation and maintenance of convectively coupled Kelvin waves (KWs) in response to surface warming. We use a set of three aquaplanet simulations made with the Community Atmospheric Model version 6 by varying the sea surface temperature boundary conditions to represent the current climate as well as warmer (+4 K) and cooler (−4 K) climates. Results show that KWs accelerate at the rate of about 7.1%/K and their amplitudes decrease by 4.7%/K. The dampening of KWs with warming is found to be associated with a weakening of the internal thermodynamic feedback between diabatic heating and temperature anomalies that generates KW eddy available potential energy (EAPE). The phase speed of KWs closely matches that of the second baroclinic mode KW in −4 K, while the phase speed of KWs is approximately that of the first baroclinic mode KW in +4 K. Meanwhile, the coupling between the two baroclinic modes weakens with warming. We hypothesize that in −4 K, as the first and second baroclinic modes are strongly coupled, KWs destabilize by positive EAPE generation within the second baroclinic mode and propagate more slowly, following the second baroclinic mode KW phase speed. In +4 K, as the first and second baroclinic modes decouple, KWs are damped by negative EAPE generation within the first baroclinic mode and propagate faster, following the first baroclinic mode KW phase speed.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004378","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-Enabled Parameterization Enhances Model Simulation of CH4 Cycling in Four Natural Wetlands","authors":"Yunjiang Zuo, Liyuan He, Yihui Wang, Jianzhao Liu, Nannan Wang, Kexin Li, Ziyu Guo, Lihua Zhang, Ning Chen, Changchun Song, Fenghui Yuan, Li Sun, Xiaofeng Xu","doi":"10.1029/2023MS004139","DOIUrl":"https://doi.org/10.1029/2023MS004139","url":null,"abstract":"<p>Microbial processes are crucial in producing and oxidizing biological methane (CH<sub>4</sub>) in natural wetlands. Therefore, modeling methanogenesis and methanotrophy is advantageous for accurately projecting CH<sub>4</sub> cycling. Utilizing the CLM-Microbe model, which explicitly represents the growth and death of methanogens and methanotrophs, we demonstrate that genome-enabled model parameterization improves model performance in four natural wetlands. Compared to the default model parameterization against CH<sub>4</sub> flux, genomic-enabled model parameterization added another contain on microbial biomass, notably enhancing the precision of simulated CH<sub>4</sub> flux. Specifically, the coefficient of determination (<i>R</i><sup>2</sup>) increased from 0.45 to 0.74 for Sanjiang Plain, from 0.78 to 0.89 for Changbai Mountain, and from 0.35 to 0.54 for Sallie's Fen, respectively. A drop in <i>R</i><sup>2</sup> was observed for the Dajiuhu nature wetland, primarily caused by scatter data points. Theil's coefficient (U) and model efficiency (ME) confirmed the model performance from default parameterization to genome-enabled model parameterization. Compared with the model solely calibrated to surface CH<sub>4</sub> flux, additional constraints of functional gene data led to better CH<sub>4</sub> seasonality; meanwhile, genome-enabled model parameterization established more robust associations between simulated CH<sub>4</sub> production rates and environmental factors. Sensitivity analysis underscored the pivotal role of microbial physiology in governing CH<sub>4</sub> flux. This genome-enabled model parameterization offers a valuable promise to integrate fast-cumulating genomic data with CH<sub>4</sub> models to better understand microbial roles in CH<sub>4</sub> in the era of climate change.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004139","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. J. Jongen, M. Lipson, A. J. Teuling, S. Grimmond, J.-J. Baik, M. Best, M. Demuzere, K. Fortuniak, Y. Huang, M. G. De Kauwe, R. Li, J. McNorton, N. Meili, K. Oleson, S.-B. Park, T. Sun, A. Tsiringakis, M. Varentsov, C. Wang, Z.-H. Wang, G. J. Steeneveld
{"title":"The Water Balance Representation in Urban-PLUMBER Land Surface Models","authors":"H. J. Jongen, M. Lipson, A. J. Teuling, S. Grimmond, J.-J. Baik, M. Best, M. Demuzere, K. Fortuniak, Y. Huang, M. G. De Kauwe, R. Li, J. McNorton, N. Meili, K. Oleson, S.-B. Park, T. Sun, A. Tsiringakis, M. Varentsov, C. Wang, Z.-H. Wang, G. J. Steeneveld","doi":"10.1029/2024MS004231","DOIUrl":"https://doi.org/10.1029/2024MS004231","url":null,"abstract":"<p>Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban-PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model-site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004231","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louis Thiry, Long Li, Etienne Mémin, Guillaume Roullet
{"title":"A Unified Formulation of Quasi-Geostrophic and Shallow Water Equations via Projection","authors":"Louis Thiry, Long Li, Etienne Mémin, Guillaume Roullet","doi":"10.1029/2024MS004510","DOIUrl":"https://doi.org/10.1029/2024MS004510","url":null,"abstract":"<p>This paper introduces a unified model for layered rotating shallow-water (RSW) and quasi-geostrophic (QG) equations, based on the intrinsic relationship between these two sets of equations. We propose a novel formulation of the QG equations as a projection of the RSW equations. This formulation uses the same prognostic variables as RSW, namely velocity and layer thickness, thereby restoring the proximity of these two sets of equations. It provides direct access to the ageostrophic velocities embedded within the geostrophic velocities resolved by the QG equations. This approach facilitates the study of differences between QG and RSW using a consistent numerical discretization. We demonstrate the effectiveness of this formulation through examples including vortex shear instability, double-gyre circulation, and a simplified North Atlantic configuration.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004510","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inderjeet Singh, Randall V. Martin, Liam Bindle, Deepangsu Chatterjee, Chi Li, Christopher Oxford, Xiaoguang Xu, Jun Wang
{"title":"Effect of Dust Morphology on Aerosol Optics in the GEOS-Chem Chemical Transport Model, on UV-Vis Trace Gas Retrievals, and on Surface Area Available for Reactive Uptake","authors":"Inderjeet Singh, Randall V. Martin, Liam Bindle, Deepangsu Chatterjee, Chi Li, Christopher Oxford, Xiaoguang Xu, Jun Wang","doi":"10.1029/2023MS003746","DOIUrl":"https://doi.org/10.1029/2023MS003746","url":null,"abstract":"<p>Many chemical transport models treat mineral dust as spherical. Solar backscatter retrievals of trace gases (e.g., OMI and TROPOMI) implicitly treat mineral dust as spherical. The impact of the morphology of mineral dust particles is studied to assess its implications for global chemical transport model (GEOS-Chem) simulations and solar backscatter trace gas retrievals at ultraviolet and visible (UV-Vis) wavelengths. We investigate how the morphology of mineral dust particles affects the simulated dust aerosol optical depth; surface area, reaction, and diffusion parameters for heterogeneous chemistry; phase function, and scattering weights for air mass factor (AMF) calculations used in solar backscatter retrievals. We use a mixture of various aspect ratios of spheroids to model the dust optical properties and a combination of shape and porosity to model the surface area, reaction, and diffusion parameters. We find that assuming spherical particles can introduce size-dependent and wavelength-dependent errors of up to 14% in simulated dust extinction efficiency with corresponding error in simulated dust optical depth typically within 5%. We find that use of spheroids rather than spheres increases forward scattered radiance and decreases backward scattering that in turn decrease the sensitivity of solar backscatter retrievals of NO<sub>2</sub> to aerosols by factors of 2.0–2.5. We develop and apply a theoretical framework based on porosity and surface fractal dimension with corresponding increase in the reactive uptake coefficient driven by increased surface area and species reactivity. Differences are large enough to warrant consideration of dust non-sphericity for chemical transport models and UV-Vis trace gas retrievals.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Variational All-Sky Assimilation Framework for MWHS-II With Hydrometeors Control Variables and Its Impacts on Analysis and Forecast of Typhoon Cases","authors":"Luyao Qin, Yaodeng Chen, Deming Meng, Xiaoping Cheng, Peng Zhang","doi":"10.1029/2023MS004153","DOIUrl":"https://doi.org/10.1029/2023MS004153","url":null,"abstract":"<p>All-sky radiance assimilation has been extensively developed to provide additional information for numerical weather prediction under cloudy conditions. Microwave radiances are particularly sensitive to hydrometeors, which can be used to initialize hydrometeor directly if the hydrometeor control variables (HCVs) are available. However, the effects of HCVs statistical structure and their multivariate correlation on all-sky radiance assimilation remain unclear. In this study, five HCVs are introduced into the variational assimilation system. The characteristics of hydrometeor background errors are analyzed, and the combined effect with the observation operator is discussed. Then a 3D Variational all-sky assimilation framework with HCVs is modified to assimilate Fengyun-3C/D Microwave Humidity Sounder-II radiance. It is shown that hydrometeors are initialized by radiance directly, and the thermodynamic fields are adjusted accordingly. The characteristics of multi-variables increments are associated with both the characteristics of HCVs in background error and the Jacobians in observation operator. Furthermore, cycle assimilation and forecast experiments for three typhoon cases are conducted. It is found that the difference between observed and analyzed brightness temperatures decreases when HCVs are activated, and the hydrometeors analysis fields are more consistent with observations. Additionally, the typhoon intensity forecasts are improved with enhanced double warm-core and the secondary circulation. This paper analyzes the characteristics of variational all-sky assimilation framework with HCVs, and demonstrates the potential value of HCVs for variational all-sky radiance assimilation.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytic Parameterization of Longwave Optical Properties of Bulk Vegetation Layer Permitting Non-Zero Leaf Reflectivity and Its Implementation in CLM5","authors":"Hyeon-Ju Gim, Seon Ki Park","doi":"10.1029/2023MS003957","DOIUrl":"https://doi.org/10.1029/2023MS003957","url":null,"abstract":"<p>For modern land surface models (LSMs) representing a singular bulk vegetation layer, the longwave optical properties (i.e., emissivity, reflectivity, and transmittivity) of vegetation layer are derived with a simplified constraint of assuming zero leaf reflectivity. This constraint is necessary, for instance, to the Beer–Lambert (B–L) law to establish a relationship between the optical properties and leaf area index. However, the simplified constraint leads to an overestimation of land surface emissivity in the vegetated regions. In this study, we introduce a new scheme considering realistic leaf reflectivity values rather than assuming zero. This new scheme is based on the relationship derived from the B–L law, but it is statistically augmented to consider the effects of leaf reflections. It is designed to emulate a multi-vegetation-layer numerical model known as the Norman model, which is capable of numerical calculations of multi-reflections among leaves. This new method consists of only a couple of simple equations; despite its simplicity, it very closely mimics the Norman model; The discrepancy of the results between the new method and the Norman model is less than measurement uncertainties for any combination of input parameters. When the new scheme is implemented in the Community Land Model version 5 (CLM5), the land surface emissivity values are simulated much more consistently with global measurements, resulting in significant alterations of land surface energy budget. The enhanced realism through our new scheme is poised to contribute to more accurate numerical weather and climate simulations.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 9","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS003957","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142316778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianguo Yuan, Jun-Hong Liang, Eric P. Chassignet, Olmo Zavala-Romero, Xiaoliang Wan, Meghan F. Cronin
{"title":"The K-Profile Parameterization Augmented by Deep Neural Networks (KPP_DNN) in the General Ocean Turbulence Model (GOTM)","authors":"Jianguo Yuan, Jun-Hong Liang, Eric P. Chassignet, Olmo Zavala-Romero, Xiaoliang Wan, Meghan F. Cronin","doi":"10.1029/2024MS004405","DOIUrl":"https://doi.org/10.1029/2024MS004405","url":null,"abstract":"<p>This study utilizes Deep Neural Networks (DNN) to improve the K-Profile Parameterization (KPP) for the vertical mixing effects in the ocean's surface boundary layer turbulence. The deep neural networks were trained using 11-year turbulence-resolving solutions, obtained by running a large eddy simulation model for Ocean Station Papa, to predict the turbulence velocity scale coefficient and unresolved shear coefficient in the KPP. The DNN-augmented KPP schemes (KPP_DNN) have been implemented in the General Ocean Turbulence Model (GOTM). The KPP_DNN is stable for long-term integration and more efficient than existing variants of KPP schemes with wave effects. Three different KPP_DNN schemes, each differing in their input and output variables, have been developed and trained. The performance of models utilizing the KPP_DNN schemes is compared to those employing traditional deterministic first-order and second-moment closure turbulent mixing parameterizations. Solution comparisons indicate that the simulated mixed layer becomes cooler and deeper when wave effects are included in parameterizations, aligning closer with observations. In the KPP framework, the velocity scale of unresolved shear, which is used to calculate ocean surface boundary layer depth, has a greater impact on the simulated mixed layer than the magnitude of diffusivity does. In the KPP_DNN, unresolved shear depends not only on wave forcing, but also on the mixed layer depth and buoyancy forcing.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 9","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004405","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}